Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Mutation analysis of SYNJ1: a possible candidate gene for chromosome 21q22-linked bipolar disorder

Abstract

Genes involved in the regulation of synaptic vesicle function are potential candidates for the development of psychiatric disorders. In addition to experimental and theoretical considerations, a number of genes involved in synaptic vesicle function map to regions of the genome that have been linked to bipolar disorder (BPD) and schizophrenia (SZ). One is synaptojanin 1 (SYNJ1) which maps to 21q22.2, a chromosomal region that has been linked to BPD in a subset of families in several studies. Synaptojanin 1 is an inositol 5-phosphatase that has an important role in synaptic vesicle endocytosis. Mutation screening of 32 exons, intron–exon junctions, and 839 bases of 5′-flanking DNA resulted in the identification of 11 mutations of which four were very common and seven were very rare. Of the 11 mutations identified, several may have functional significance including two coding variants, two that may affect the binding of a transcription factor, and two that involve known splicing regulatory domains. Five bipolar patients out of 149 analyzed were found who have one of the four rare variants that were most likely to have functional significance compared with 0/148 controls. The allele frequencies for three of the four common variants were very similar in bipolar patients and controls. A slight difference in allele frequency was found for an interesting mutation we detected in intron 12 in which two non-adjacent thymidine residues are deleted in a poly-AT tract located near the exon 12 splice donor site (χ2?=?2.45, P?=?0.12, 2-tailed). Although we failed to unequivocally identify a specific SYNJ1 allele that could be responsible for putative chromosome 21q22-linked BPD, several interesting variants were found to be increased in bipolar subjects and should be further investigated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Berridge MJ, Irvine RF . Inositol phosphates and cell signalling Nature 1989 341: 197–205

    Article  CAS  PubMed  Google Scholar 

  2. Berman RM, Narasimhan M, Miller HL, Anand A, Cappiello A, Oren DA et al. Transient depressive relapse induced by catecholamine depletion Arch Gen Psychiatry 1999 56: 395–403

    Article  CAS  PubMed  Google Scholar 

  3. Sulzer D, Chen TK, Lau YY, Kristensen H, Rayport S, Ewing A . Amphetamine redistributes dopamine from synaptic vesicles to cytosol and promotes reverse transport J Neurosci 1995 15: 4102–4108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hess EJ, Rogan PK, Domoto M, Tinker DE, Ladda RL, Ramer JC . Absence of linkage of apparently single gene mediated ADHD with the human syntenic region of the mouse mutant coloboma Am J Med Genet 1995 60: 573–579

    Article  CAS  PubMed  Google Scholar 

  5. Karson CN, Mrak RE, Schluterman KO, Sturner WQ, Sheng JG, Griffin WS . Alterations in synaptic proteins and their encoding mRNAs in prefrontal cortex in schizophrenia: a possible neurochemical basis for hypofrontality Mol Psychiatry 1999 4: 39–45

    Article  CAS  PubMed  Google Scholar 

  6. Eastwood SL, Harrison PJ . Hippocampal synaptic pathology in schizophrenia, bipolar disorder and major depression: a study of complexin mRNAs Mol Psychiatry 2000 5: 425–432

    Article  CAS  PubMed  Google Scholar 

  7. Honer WG, Falkai P, Chen C, Arango V, Mann JJ, Dwork AJ . Synaptic and plasticity-associated proteins in anterior frontal cortex in severe mental illness Neuroscience 1999 91: 1247–1255

    Article  CAS  PubMed  Google Scholar 

  8. Young CE, Arima K, Xie J, Hu L, Beach TG, Falkai P et al. SNAP-25 deficit and hippocampal connectivity in schizophrenia Cereb Cortex 1998 8: 261–268

    Article  CAS  PubMed  Google Scholar 

  9. Vawter MP, Howard AL, Hyde TM, Kleinman JE, Freed WJ . Alterations of hippocampal secreted N-CAM in bipolar disorder and synaptophysin in schizophrenia Mol Psychiatry 1999 4: 467–475

    Article  CAS  PubMed  Google Scholar 

  10. Pulver AE, Karayiorgou M, Wolyniec PS, Lasseter VK, Kasch L, Nestadt G . Sequential strategy to identify a susceptibility gene for schizophrenia: report of potential linkage on chromosome 22q12–q13.1: part 1 Am J Med Genet 1994 54: 36–43

    Article  CAS  PubMed  Google Scholar 

  11. Coon H, Holik J, Hoff M, Reimherr F, Wender P, Myles-Worsley M et al. Analysis of chromosome 22 markers in nine schizophrenia pedigrees Am J Med Genet 1994 54: 72–79

    Article  CAS  PubMed  Google Scholar 

  12. Moises HW, Yang L, Li T, Havsteen B, Fimmers R, Baur MP et al. Potential linkage disequilibrium between schizophrenia and locus D22S278 on the long arm of chromosome 22 Am J Med Genet 1995 60: 465–467

    Article  CAS  PubMed  Google Scholar 

  13. Karayiorgou M, Morris MA, Morrow B, Shprintzen RJ, Goldberg R, Borrow J et al. Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11 Proc Natl Acad Sci 1995 92: 7612–7616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Edenberg HJ, Fouroud T, Connealy PM, Sorbel JJ, Carr K, Crose C et al. Initial genome screen for bipolar disorder in the NIMH genetics initiative pedigrees: chromosomes 3, 5, 15, 16, 17, and 22 Am J Med Genet (Neuropsych Genet) 1997 74: 238–246

    Article  CAS  Google Scholar 

  15. Lachman HM, Kelsoe JR, Remick JA, Sadovnick D, Rapaport MH, Lin M et al. Linkage studies support a possible locus for bipolar disorder near the velo-cardio-facial syndrome region on chromosome Am J Med Genet (Neuropsych Genet) 1997 74: 121–128

    Article  CAS  Google Scholar 

  16. Dunham I, Shimiau N, Roe BA, Chissoe S et al. The DNA sequence of human chromosome 22 Nature 1999 402: 489–495

    Article  CAS  PubMed  Google Scholar 

  17. Wei J, Hemmings GP . Searching for a locus for schizophrenia within chromosome Xp11 Am J Med Genet (Neuropsych Genet) 2000 96: 4–7

    Article  CAS  Google Scholar 

  18. Saito T, Parsia S, Papolos DF, Lachman HM . Analysis of the pseudoautosomal x-linked gene sybl1 in bipolar affective disorder: description of a new candidate allele for psychiatric disorders Am J Med Genet (Neuropsych Genet) 2000 96: 317–323

    Article  CAS  Google Scholar 

  19. Cao Q, Martinez M, Zhang J, Sanders AR, Badner JA, Cravchik A et al. Suggestive evidence for a schizophrenia susceptibility locus on chromosome 6q and a confirmation in an independent series of pedigrees Genomics 1997 43: 1–8

    Article  CAS  PubMed  Google Scholar 

  20. Martinez M, Goldin LR, Cao Q, Zhang J, Sanders AR, Nancarrow DJ et al. Follow-up study on a susceptibility locus for schizophrenia on chromosome 6q Am J Med Genet 1999 88: 337–343

    Article  CAS  PubMed  Google Scholar 

  21. Nurnberger JI, Foroud T . Chromosome 6 workshop report Am J Med Genet 1999 88: 233–238

    Article  PubMed  Google Scholar 

  22. Cremona O, Nimmakayalu M, Haffner C, Bray-Ward P, Ward DC, De Camilli P . Assignment of SYNJ1 to human chromosome 21q22.2 and Synj12 to the murine homologous region on chromosome 16C3–4 by in situ hybridization Cytogenet Cell Genet 2000 88: 89–90

    Article  CAS  PubMed  Google Scholar 

  23. Hattori M, Fujiyama A, Taylor TD and the chromosome 21 mapping and sequencing consortium . The DNA sequence of human chromosome 21 Nature 2000 405: 311–319

    Article  CAS  PubMed  Google Scholar 

  24. Straub RE, Lehner T, Luo Y, Loth JE, Shao W, Sharpe L et al. A possible vulnerability locus for BP affective disorder on chromosome 21 Nature Genet 1994 8: 291–296

    Article  CAS  PubMed  Google Scholar 

  25. Detera-Wadleigh SD, Badner JA, Goldin LR, Berrettini WH, Sanders AR, Rollins DY et al. Affected sib-pair analyses reveal support for a susceptibility locus for bipolar disorder on chromosome 21q Am J Hum Genet 1996 58: 1279–1285

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Detera-Wadleigh SD, Badner JA, Yoshikawa T, Sanders AR, Goldin LR, Turner G et al. Initial genome screen for bipolar disorder in the NIMH genetics initiative pedigrees: chromosomes 4, 7, 9, 18, 19, 20, and 21q Am J Med Genet (Neuropsych Genet) 1997 74: 254–262

    Article  CAS  Google Scholar 

  27. Smyth C, Kalsi G, Curtis D, Brynjolfsson J, O'Neill J, Rifkin L et al. Two-locus admixture linkage analysis of bipolar and unipolar affective disorder supports the presence of susceptibility loci on chromosomes 11p15 and 21q22 Genomics 1997 39: 271–278

    Article  CAS  PubMed  Google Scholar 

  28. Curtis D . Chromosome 21 workshop Am J Med Genet 1999 88: 272–274

    Article  CAS  PubMed  Google Scholar 

  29. Schiavo G, Gu Q-M, Prestwich GD, Sollner TH, Rothman JE . Calcium-dependent switching of the specificity of phosphoinositide binding to synaptotagmin Proc Natl Acad Sci 1996 93: 13327–13332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cremona O, De Camilli . Synaptic vesicle endocytosis Curr Opin Neurobiol 1997 7: 323–330

    Article  CAS  PubMed  Google Scholar 

  31. Cremona O, Di Paolo G, Wenk MR, Luthi A, Kim WT, Takei K et al. Essential role of phosphoinositide metabolism in synaptic vesicle recycling Cell 1999 99: 179–188

    Article  CAS  PubMed  Google Scholar 

  32. DeCamilli P, Takei K . Molecular mechanisms in synaptic vesicle endocytosis and recycling Neuron 1996 16: 481–486

    Article  CAS  Google Scholar 

  33. McPherson PS, Garcia EP, Slepnev VI, David C, Zhang X, Grabs D et al. A presynaptic inositol-5-phosphatase Nature 1996 379: 353–357

    Article  CAS  PubMed  Google Scholar 

  34. de Heuvel E, Bell AW, Ramjaun AR, Wong K, Sossin WS, McPherson PS . Identification of the major synaptojanin-binding proteins in brain J Biol Chem 1997 272: 8710–8716

    Article  CAS  PubMed  Google Scholar 

  35. Ramjaun AR, McPherson PS . Tissue-specific alternative splicing generates two synaptojanin isoforms with differential membrane binding properties J Biol Chem 1996 271: 24856–24861

    Article  CAS  PubMed  Google Scholar 

  36. Guo S, Stolz LE, Lemrow SM, York JD . SAC-like domains of yeast SAC1, INP52, and INP53 and of human synaptojanin encode polyphosphoinositide phosphatases J Biol Chem 1999 274: 12990–12995

    Article  CAS  PubMed  Google Scholar 

  37. Khvotchev M, Sudhoff TC . Developmentally regulated alternative splicing in a novel synaptojanin J Biol Chem 1998 272: 2306–2311

    Article  Google Scholar 

  38. David C, McPherson PS, Mundigi O, deCamilli P . A role of amphiphysin in synaptic vesicle endocytosis suggested by its binding to dynamin in nerve terminals Proc Natl Acad Sci 1996 93: 331–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Endicott J, Spitzer RL . A diagnostic interview. The Schedule for Affective Disorders and Schizophrenia Arch Gen Psychiatry 1978 35: 837–844

    Article  CAS  PubMed  Google Scholar 

  40. Spitzer RL, Endicott J, Robins E . Research diagnostic criteria: rationale and reliability Arch Gen Psychiatry 1978 35: 773–782

    Article  CAS  PubMed  Google Scholar 

  41. Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T . Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms Proc Natl Acad Sci 1989 86: 2766–2770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Quandt K, Frech K, Karas H, Wingender E, Werner T . Matlnd and Matlnspector: new, fast and versatile tools for detection of consensus matches in nucleotide sequence data Nucl Acids Res 1995 23: 4878–4884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kophengnavong T, Michnowicz JE, Blackwell TK . Establishment of distinct MyoD, E2A and twist DNA binding specificities by different basic region DNA conformations Mol Cell Biol 2000 20: 261–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li M, Pritchard PH . Characterization of mutations in the putative branchpoint sequence of intron 4 on the splicing within the human lecithin: cholesterol acyltransferase gene J Biol Chem 2000 24: 18079–18084

    Article  Google Scholar 

  45. Zhang L, Mason JI, Haiki Y, Copeland KC, Castro-Magana M, Gordon-Walker TT et al. Characterization of two novel homozygous missense mutations involving codon 6 and 259 of type II-3β-hydroxysteroid dehydrogenase gene causing, respectively, nonsalt-wasting and salt wasting 3β-hydroxysteroid dehydrogenase deficiency disorder J Clin Endo and Met 2000 85: 1678–1685

    CAS  Google Scholar 

  46. Li XJ, Wang DY, Zhu Y, Guo RJ, Wang XD, Lubomir K et al. Mxi1 mutations in human neurofibrosarcomas Jap J Cancer Res 1999 90: 740–746

    Article  CAS  Google Scholar 

  47. Kubo A, Yoshikawa A, Hirashima T, Masuda N, Takada M, Takahara J et al. Point mutations of the topoisomerase II-alpha gene in patients with small cell lung cancer treated with etoposide Cancer Res 1996 56: 1232–1236

    CAS  PubMed  Google Scholar 

  48. Ruskin B, Green MR . Role of the 3′ splice site consensus sequence in mammalian pre-mRNA splicing Nature 1985 317: 732–734

    Article  CAS  PubMed  Google Scholar 

  49. Lou H, Helfman DM, Gagel RF, Berget SM . Polypyrimidine tract-binding protein positively regulates inclusion of an alternative 3′-terminal exon Mol Cell Biol 1999 19: 78–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Coolidge CJ, Seely RJ, Patton JG . Function analysis of the polypyrimidine tract in pre-mRNA splicing Nucl Acids Res 1997 25: 888–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Papolos DF, Faedda GL, Weit S, Goldberg R, Morrow B, Kucherlapati R et al. Bipolar spectrum disorders in patients diagnosed with velo-cardio-facial syndrome: does a hemizygous deletion of chromosome 22q11 result in bipolar affective disorder Am J Psychiatry 1996 153: 1541–1547

    Article  CAS  PubMed  Google Scholar 

  52. Ohtusuki T, Ichiki R, Toru M, Arinami T . Mutational analysis of the synapsin III gene on chromosome 22q12–13 in schizophrenia Psychiatry Res 2000 94: 1–7

    Article  Google Scholar 

  53. Gurling H, Smyth C, Kalsi G, Moloney E, Rifkin L, O'Neal J et al. Linkage findings in bipolar disorder Nature Genet 1995 10: 8–9

    Article  CAS  PubMed  Google Scholar 

  54. Byerley W, Holik J, Hoff M, Coon H . Search for a gene predisposing to manic-depression on chromosome 21 Am J Med Genet 1995 60: 231–233

    Article  CAS  PubMed  Google Scholar 

  55. Ewald H, Eiberg H, Mors E, Flint T, Kruse TA . Linkage study between manic-depressive illness and chromosome 21 Am J Med Genet 1996 67: 218–224

    Article  CAS  PubMed  Google Scholar 

  56. Boulikas T . Homeotic protein binding sites, origins of replication, and nuclear matrix anchorage sites share ATTA and ATTTA motifs J Cell Biochem 1992 50: 111–123

    Article  CAS  PubMed  Google Scholar 

  57. Rhodes C, Yamada Y . Characterization of a glucocorticoid responsive element and identification of an AT-rich element that regulate the link protein gene Nucl Acids Res 1995 23: 2305–2313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Roy N, Laflamme G, Raymond V . 5′ untranslated sequences modulate rapid mRNA degradation mediated by 3′ AU-rich element in v-/c-fos recombinants Nucl Acids Res 1992 20: 5753–5762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jin Y, Surabhi RH, Fresnoza A, Lytras A, Cattini PA . A role for A/T-rich sequences and Pit-1/GHF-1 in a distal enhancer located in the human growth hormone locus control region with preferential pituitary activity in culture and transgenic mice Mol Endocrinol 1999 13: 1249–1266

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Some DNA samples were obtained from the Coriell Institute in conjunction with The National Institutes of Mental Health Bipolar Genetics Initiative, a multi-site study performed by four independent research teams in collaboration with extramural staff from the National Institute Mental Health (NIMH). The four Principal Investigators and Co-Investigators from the four sites are: Indiana University, Indianapolis, IN U01 MH46282, John Nurnberger, MD, PhD, Marvin Miller, MD, and Elizabeth Bowman, MD; Washington University, St Louis, MO, U01 MH46280, Theodore Reich, MD, Allison Goate, PhD, and John Rice, PhD; Johns Hopkins University, Baltimore MD U01 MH46274, J Raymond DePaulo, Jr, MD, Sylvia Simpson, MD, MPH, and Colin Stine, PhD; NIMH Intramural Research Program, Clinical Neurogenetics Branch, Bethesda, MD, Elliot Gershon, MD, Diane Kazuba, BA, and Elizabeth Maxwell, MSW.

TS is supported by the American Psychiatric Association, Program for Minority Research Training in Psychiatry, and by a Young Investigator Award from NARSAD. HML is a recipient of a NARSAD Independent Investigator Award. DFP is a recipient of a NARSAD Independent Investigator Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H M Lachman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, T., Guan, F., Papolos, D. et al. Mutation analysis of SYNJ1: a possible candidate gene for chromosome 21q22-linked bipolar disorder. Mol Psychiatry 6, 387–395 (2001). https://doi.org/10.1038/sj.mp.4000871

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4000871

Keywords

This article is cited by

Search

Quick links