Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder

Abstract

This systematic review summarizes pharmacogenetic studies on antidepressant response and side effects. Out of the 17 genes we reviewed, 8 genes were entered into the meta-analysis (SLC6A4, HTR1A, HTR2A, TPH1, gene encoding the β-3 subunit, brain-derived neurotrophic factor (BDNF), HTR3A and HTR3B). TPH1 218C/C genotype (7 studies, 754 subjects) was significantly associated with a better response (odds ratio, OR=1.62; P=0.005) with no heterogeneity between ethnicities. A better response was also observed in subjects with the Met variant within the BDNF 66Val/Met polymorphism (4 studies, 490 subjects; OR=1.63, P=0.02). Variable number of tandem repeats polymorphism within intron 2 (STin2) 12/12 genotype showed a trend toward a better response in Asians (STin2: 5 studies, 686 subjects; OR=3.89, P=0.03). As for side effects, pooled ORs of serotonin transporter gene promoter polymorphism (5-HTTLPR) l (9 studies, 2642 subjects) and HTR2A −1438G/G (7 studies, 801 subjects) were associated with a significant risk modulation (OR=0.64, P=0.0005) and (OR=1.91, P=0.0006), respectively. Interestingly, this significance became more robust when analyzed with side effect induced by selective serotonin reuptake inhibitors only (5-HTTLPR: P=0.0001, HTR2A: P<0.0001). No significant result could be observed for the other variants. These results were not corrected for multiple testing in each variant, phenotype and subcategory. This would have required a Bonferroni significance level of P<0.0023. Although some heterogeneity was present across studies, our finding suggests that 5-HTTLPR, STin2, HTR1A, HTR2A, TPH1 and BDNF may modulate antidepressant response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Ustun TB, Ayuso-Mateos JL, Chatterji S, Mathers C, Murray CJ . Global burden of depressive disorders in the year 2000. Br J Psychiatry 2004; 184: 393–403.

    Article  Google Scholar 

  2. Moncrieff J, Kirsch I . Efficacy of antidepressants in adults. BMJ 2005; 331: 551–557.

    Article  Google Scholar 

  3. Masand PS . Tolerability and adherence issues in antidepressant therapy. Clin Ther 2003; 25: 2289–2304.

    Article  CAS  PubMed  Google Scholar 

  4. Cramer JA, Rosenheck R . Compliance with medication regimens for mental and physical disorders. Psychiatr Serv 1998; 49: 196–201.

    Article  CAS  PubMed  Google Scholar 

  5. Serretti A, Olgiati P . Pharmacogenetics of major depression: from research to clinical practice. Curr Med Lit 2007; 18: 37–52.

    Google Scholar 

  6. Smits KM, Smits LJ, Schouten JS, Peeters FP, Prins MH . Does pretreatment testing for serotonin transporter polymorphisms lead to earlier effects of drug treatment in patients with major depression? A decision-analytic model. Clin Ther 2007; 29: 691–702.

    Article  CAS  PubMed  Google Scholar 

  7. Kirchheiner J, Nickchen K, Bauer M, Wong ML, Licinio J, Roots I et al. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry 2004; 9: 442–473.

    Article  CAS  PubMed  Google Scholar 

  8. Munafo MR, Flint J . Meta-analysis of genetic association studies. Trends Genet 2004; 20: 439–444.

    Article  CAS  PubMed  Google Scholar 

  9. Cooper H, Hedges LV . The Handbook of Research Synthesis. Russell Sage Foundation: New York, 1994.

    Google Scholar 

  10. Glass GV . Primary, secondary and meta-analysis of research. Educ Res 1976; 5: 3–8.

    Article  Google Scholar 

  11. Kato M, Fukuda T, Wakeno M, Okugawa G, Takekita Y, Watanabe S et al. Effect of 5-HT1A gene polymorphisms on antidepressant response in major depressive disorder. Am J Med Genet B Neuropsychiatr Genet 2008; e-pub ahead of print.

  12. Quitkin FM, Rabkin JG, Ross D, Stewart JW . Identification of true drug response to antidepressants. Use of pattern analysis. Arch Gen Psychiat 1984; 41: 782–786.

    Article  CAS  PubMed  Google Scholar 

  13. Serretti A, Kato M, Kennedy JL . Pharmacogenetic studies in depression: a proposal for methodologic guidelines. Pharmacogenomics J 2008; 8: 90–100.

    Article  CAS  PubMed  Google Scholar 

  14. Egger M, Davey Smith G, Schneider M, Minder C . Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Serretti A, Kato M, De Ronchi D, Kinoshita T . Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with selective serotonin reuptake inhibitor efficacy in depressed patients. Mol Psychiatry 2007; 12: 247–257.

    Article  CAS  PubMed  Google Scholar 

  16. Bakker PR, van Harten PN, van Os J . Antipsychotic-induced tardive dyskinesia and polymorphic variations in COMT, DRD2, CYP1A2 and MnSOD genes: a meta-analysis of pharmacogenetic interactions. Mol Psychiatry 2008; 13: 544–556.

    Article  CAS  PubMed  Google Scholar 

  17. Li D, He L . Meta-analysis supports association between serotonin transporter (5-HTT) and suicidal behavior. Mol Psychiatry 2007; 12: 47–54.

    Article  CAS  PubMed  Google Scholar 

  18. Lin PY, Tsai G . Meta-analyses of the association between genetic polymorphisms of neurotrophic factors and schizophrenia. Schizophr Res 2004; 71: 353–360.

    Article  PubMed  Google Scholar 

  19. Lopez-Leon S, Janssens AC, Gonzalez-Zuloeta Ladd AM, Del-Favero J, Claes SJ, Oostra BA et al. Meta-analyses of genetic studies on major depressive disorder. Mol Psychiatry 2008; 13: 772–785.

    Article  CAS  PubMed  Google Scholar 

  20. Baum AE, Hamshere M, Green E, Cichon S, Rietschel M, Noethen MM et al. Meta-analysis of two genome-wide association studies of bipolar disorder reveals important points of agreement. Mol Psychiatry 2008; 13: 466–467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE . Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 2007; 39: 17–23.

    Article  CAS  PubMed  Google Scholar 

  22. Ramamoorthy S, Bauman AL, Moore KR, Han H, Yang-Feng T, Chang AS et al. Antidepressant- and cocaine-sensitive human serotonin transporter: molecular cloning, expression, and chromosomal localization. Proc Natl Acad Sci USA 1993; 90: 2542–2546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Heils A, Teufel A, Petri S, Stöber G, Riederer P, Bengel D et al. Allelic variation of human serotonin trasporter gene expression. J Neurochem 1996; 66: 2621–2624.

    Article  CAS  PubMed  Google Scholar 

  24. Smeraldi E, Zanardi R, Benedetti F, Dibella D, Perez J, Catalano M . Polymorphism within the promoter of the serotonin transporter gene and antidepressant efficacy of fluvoxamine. Mol Psychiatry 1998; 3: 508–511.

    Article  CAS  PubMed  Google Scholar 

  25. Zanardi R, Benedetti F, DiBella D, Catalano M, Smeraldi E . Efficacy of paroxetine in depression is influenced by a functional polymorphism within the promoter of serotonin transporter gene. J Clin Psychopharmacol 2000; 20: 105–107.

    Article  CAS  PubMed  Google Scholar 

  26. Pollock BG, Ferrell RE, Mulsant BH, Mazumdar S, Miller M, Sweet RA et al. Allelic variation in the serotonin transporter promoter affects onset of paroxetine treatment response in late-life depression. Neuropsychopharmacology 2000; 23: 587–590.

    Article  CAS  PubMed  Google Scholar 

  27. Kim DK, Lim SW, Lee S, Sohn SE, Kim S, Hahn CG et al. Serotonin transporter gene polymorphism and antidepressant response. Neuroreport 2000; 11: 215–219.

    Article  CAS  PubMed  Google Scholar 

  28. Zanardi R, Serretti A, Rossini D, Franchini L, Cusin C, Lattuada E et al. Factors affecting fluvoxamine antidepressant activity: influence of pindolol and 5-HTTLPR in delusional and nondelusional depression. Biol Psychiatry 2001; 50: 323–330.

    Article  CAS  PubMed  Google Scholar 

  29. Minov C, Baghai TC, Schule C, Zwanzger P, Schwarz MJ, Zill P et al. Serotonin-2A-receptor and -transporter polymorphisms: lack of association in patients with major depression. Neurosci Lett 2001; 303: 119–122.

    Article  CAS  PubMed  Google Scholar 

  30. Yoshida K, Ito K, Sato K, Takahashi H, Kamata M, Higuchi H et al. Influence of the serotonin transporter gene-linked polymorphic region on the antidepressant response to fluvoxamine in Japanese depressed patients. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26: 383–386.

    Article  CAS  PubMed  Google Scholar 

  31. Ito K, Yoshida K, Sato K, Takahashi H, Kamata M, Higuchi H et al. A variable number of tandem repeats in the serotonin transporter gene does not affect the antidepressant response to fluvoxamine. Psychiatry Res 2002; 111: 235–239.

    Article  CAS  PubMed  Google Scholar 

  32. Takahashi H, Yoshida K, Ito K, Sato K, Kamata M, Higuchi H et al. No association between the serotonergic polymorphisms and incidence of nausea induced by fluvoxamine treatment. Eur Neuropsychopharmacol 2002; 12: 477–481.

    Article  CAS  PubMed  Google Scholar 

  33. Yu YW, Tsai SJ, Chen TJ, Lin CH, Hong CJ . Association study of the serotonin transporter promoter polymorphism and symptomatology and antidepressant response in major depressive disorders. Mol Psychiatry 2002; 7: 1115–1119.

    Article  CAS  PubMed  Google Scholar 

  34. Joyce PR, Mulder RT, Luty SE, McKenzie JM, Miller AL, Rogers GR et al. Age-dependent antidepressant pharmacogenomics: polymorphisms of the serotonin transporter and G protein beta3 subunit as predictors of response to fluoxetine and nortriptyline. Int J Neuropsychopharmacol 2003; 6: 339–346.

    Article  CAS  PubMed  Google Scholar 

  35. Perlis RH, Mischoulon D, Smoller JW, Wan YJ, Lamon-Fava S, Lin KM et al. Serotonin transporter polymorphisms and adverse effects with fluoxetine treatment. Biol Psychiatry 2003; 54: 879–883.

    Article  CAS  PubMed  Google Scholar 

  36. Arias B, Catalan R, Gasto C, Gutierrez B, Fananas L . 5-HTTLPR polymorphism of the serotonin transporter gene predicts non-remission in major depression patients treated with citalopram in a 12-weeks follow up study. J Clin Psychopharmacol 2003; 23: 563–567.

    Article  CAS  PubMed  Google Scholar 

  37. Durham LK, Webb SM, Milos PM, Clary CM, Seymour AB . The serotonin transporter polymorphism, 5HTTLPR, is associated with a faster response time to sertraline in an elderly population with major depressive disorder. Psychopharmacology (Berl) 2004; 174: 525–529.

    Article  CAS  Google Scholar 

  38. Serretti A, Cusin C, Rossini D, Artioli P, Dotoli D, Zanardi R . Further evidence of a combined effect of SERTPR and TPH on SSRIs response in mood disorders. Am J Med Genet 2004; 129B: 36–40.

    Article  PubMed  Google Scholar 

  39. Lee MS, Lee HY, Lee HJ, Ryu SH . Serotonin transporter promoter gene polymorphism and long-term outcome of antidepressant treatment. Psychiatr Genet 2004; 14: 111–115.

    Article  PubMed  Google Scholar 

  40. Murphy Jr GM, Hollander SB, Rodrigues HE, Kremer C, Schatzberg AF . Effects of the serotonin transporter gene promoter polymorphism on mirtazapine and paroxetine efficacy and adverse events in geriatric major depression. Arch Gen Psychiatry 2004; 61: 1163–1169.

    Article  CAS  PubMed  Google Scholar 

  41. Yoshida K, Takahashi H, Higuchi H, Kamata M, Ito K, Sato K et al. Prediction of antidepressant response to milnacipran by norepinephrine transporter gene polymorphisms. Am J Psychiatry 2004; 161: 1575–1580.

    Article  PubMed  Google Scholar 

  42. Peters EJ, Slager SL, McGrath PJ, Knowles JA, Hamilton SP . Investigation of serotonin-related genes in antidepressant response. Mol Psychiatry 2004; 9: 879–889.

    Article  CAS  PubMed  Google Scholar 

  43. Kraft JB, Slager SL, McGrath PJ, Hamilton SP . Sequence analysis of the serotonin transporter and associations with antidepressant response. Biol Psychiatry 2005; 58: 374–381.

    Article  CAS  PubMed  Google Scholar 

  44. Kato M, Ikenaga Y, Wakeno M, Okugawa G, Nobuhara K, Fukuda T et al. Controlled clinical comparison of paroxetine and fluvoxamine considering the serotonin transporter promoter polymorphism. Int Clin Psychopharmacol 2005; 20: 151–156.

    Article  PubMed  Google Scholar 

  45. Smeraldi E, Serretti A, Artioli P, Lorenzi C, Catalano M . Serotonin transporter gene-linked polymorphic region: possible pharmacogenetic implications of rare variants. Psychiatr Genet 2006; 16: 153–158.

    Article  PubMed  Google Scholar 

  46. Hong CJ, Chen TJ, Yu YW, Tsai SJ . Response to fluoxetine and serotonin 1A receptor (C-1019G) polymorphism in Taiwan Chinese major depressive disorder. Pharmacogenomics J 2006; 6: 27–33.

    Article  CAS  PubMed  Google Scholar 

  47. Kato M, Fukuda T, Wakeno M, Fukuda K, Okugawa G, Ikenaga Y et al. Effects of the serotonin Type 2A, 3A and 3B receptor and the serotonin transporter genes on paroxetine and fluvoxamine efficacy and adverse drug reactions in depressed Japanese patients. Neuropsychobiology 2006; 53: 186–195.

    Article  CAS  PubMed  Google Scholar 

  48. Kirchheiner J, Nickchen K, Sasse J, Bauer M, Roots I, Brockmoller J . A 40-basepair VNTR polymorphism in the dopamine transporter (DAT1) gene and the rapid response to antidepressant treatment. Pharmacogenomics J 2006.

  49. Kim H, Lim S-W, Kim S, Kim J-W, Chang YH, Carroll BJ et al. Monoamine transporter gene polymorphisms and antidepressant response in Koreans with late-life depression. JAMA 2006; 296: 1609–1618.

    Article  CAS  PubMed  Google Scholar 

  50. Popp J, Leucht S, Heres S, Steimer W . Serotonin transporter polymorphisms and side effects in antidepressant therapy—a pilot study. Pharmacogenomics 2006; 7: 159–166.

    Article  CAS  PubMed  Google Scholar 

  51. Ng CH, Easteal S, Tan S, Schweitzer I, Ho BK, Aziz S . Serotonin transporter polymorphisms and clinical response to sertraline across ethnicities. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30: 953–957.

    Article  CAS  PubMed  Google Scholar 

  52. Hu XZ, Rush AJ, Charney D, Wilson AF, Sorant AJ, Papanicolaou GJ et al. Association between a functional serotonin transporter promoter polymorphism and citalopram treatment in adult outpatients with major depression. Arch Gen Psychiatry 2007; 64: 783–792.

    CAS  PubMed  Google Scholar 

  53. Bozina N, Peles AM, Sagud M, Bilusic H, Jakovljevic M . Association study of paroxetine therapeutic response with SERT gene polymorphisms in patients with major depressive disorder. World J Biol Psychiatry 2007; 1–8.

  54. Kang RH, Wong ML, Choi MJ, Paik JW, Lee MS . Association study of the serotonin transporter promoter polymorphism and mirtazapine antidepressant response in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31: 1317–1321.

    Article  CAS  PubMed  Google Scholar 

  55. Smits K, Smits L, Peeters F, Schouten J, Janssen R, Smeets H et al. Serotonin transporter polymorphisms and the occurrence of adverse events during treatment with selective serotonin reuptake inhibitors. Int Clin Psychopharmacol 2007; 22: 137–143.

    Article  PubMed  Google Scholar 

  56. Kronenberg S, Apter A, Brent D, Schirman S, Melhem N, Pick N et al. Serotonin transporter polymorphism (5-HTTLPR) and citalopram effectiveness and side effects in children with depression and/or anxiety disorders. J Child Adolesc Psychopharmacol 2007; 17: 741–750.

    Article  PubMed  Google Scholar 

  57. Wilkie MJ, Smith G, Day RK, Matthews K, Smith D, Blackwood D et al. Polymorphisms in the SLC6A4 and HTR2A genes influence treatment outcome following antidepressant therapy. Pharmacogenomics J 2008; e-pub ahead of print.

  58. Tanaka M, Kobayashi D, Murakami Y, Ozaki N, Suzuki T, Iwata N et al. Genetic polymorphisms in the 5-hydroxytryptamine type 3B receptor gene and paroxetine-induced nausea. Int J Neuropsychopharmacol 2008; 11: 261–267.

    Article  CAS  PubMed  Google Scholar 

  59. Kunugi H, Hattori M, Kato T, Tatsumi M, Sakai T, Sasaki T et al. Serotonin transporter gene polymorphisms: ethnic difference and possible association with bipolar affective disorder. Mol Psychiatry 1997; 2: 457–462.

    Article  CAS  PubMed  Google Scholar 

  60. Nakamura M, Ueno S, Sano A, Tanabe H . The human serotonin transporter gene linked polymorphism (5-HTTLPR) shows ten novel allelic variants. Mol Psychiatry 2000; 5: 32–38.

    Article  CAS  PubMed  Google Scholar 

  61. Perlis R, Smoller J, Wan Y, Mischoulon D, Lamon-Fava S, Lin K et al. Serotonin transporter plymorphisms and adverse effects with fluoxetine treatment. Pharmacogenetics in Psychiatry Meeting. New York, 2003.

    Google Scholar 

  62. Ogilvie AD, Battersby S, Bubb VJ, Fink G, Harmar AJ, Goodwim GM et al. Polymorphism in serotonin transporter gene associated with susceptibility to major depression. Lancet 1996; 347: 731–733.

    Article  CAS  PubMed  Google Scholar 

  63. MacKenzie A, Quinn J . A serotonin transporter gene intron 2 polymorphic region, correlated with affective disorders, has allele-dependent differential enhancer-like properties in the mouse embryo. Proc Natl Acad Sci USA 1999; 96: 15251–15255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hranilovic D, Stefulj J, Schwab S, Borrmann-Hassenbach M, Albus M, Jernej B et al. Serotonin transporter promoter and intron 2 polymorphisms: relationship between allelic variants and gene expression. Biol Psychiatry 2004; 55: 1090–1094.

    Article  CAS  PubMed  Google Scholar 

  65. Lin PI, Vance JM, Pericak-Vance MA, Martin ER . No gene is an island: the flip-flop phenomenon. Am J Hum Genet 2007; 80: 531–538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Anonymous. The International HapMap Project. Nature 2003; 426: 789–796.

    Article  CAS  Google Scholar 

  67. Lemonde S, Turecki G, Bakish D, Du L, Hrdina P, Bown C et al. Impaired trans-repression at a 5-HT1A receptor gene polimorphism associated with major depression and suicide. J Neurosci 2003; 23: 8788–8799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Albert PR, Lemonde S . 5-HT1A receptors, gene repression, and depression: guilt by association. Neuroscientist 2004; 10: 575–593.

    Article  CAS  PubMed  Google Scholar 

  69. Parsey RV, Olvet DM, Oquendo MA, Huang YY, Ogden RT, Mann JJ . Higher 5-HT(1A) receptor binding potential during a major depressive episode predicts poor treatment response: preliminary data from a Naturalistic Study. Neuropsychopharmacology 2006; 31: 1745–1749.

    Article  CAS  PubMed  Google Scholar 

  70. Stahl S . 5HT1A receptors and pharmacotherapy. Is serotonin receptor down-regulation linked to the mechanism of action of antidepressant drugs? Psychopharmacol Bull 1994; 30: 39–43.

    CAS  PubMed  Google Scholar 

  71. Serretti A, Mandelli L, Giegling I, Schneider B, Hartmann AM, Schnabel A et al. HTR2C and HTR1A gene variants in German and Italian suicide attempters and completers. Am J Med Genet B Neuropsychiatr Genet 2007; 144: 291–299.

    Article  CAS  Google Scholar 

  72. Yu YW, Tsai SJ, Liou YJ, Hong CJ, Chen TJ . Association study of two serotonin 1A receptor gene polymorphisms and fluoxetine treatment response in Chinese major depressive disorders. Eur Neuropsychopharmacol 2006; 16: 498–503.

    Article  CAS  PubMed  Google Scholar 

  73. Chen TJ, Yu YW, Hong CJ, Chen MC, Tsai SJ . Association analysis for the C-1019G promoter variant of the 5-HT1A receptor gene with auditory evoked potentials in major depression. Neuropsychobiology 2004; 50: 292–295.

    Article  CAS  PubMed  Google Scholar 

  74. Arias B, Arranz MJ, Gasto C, Catalan R, Pintor L, Gutierrez B et al. Analysis of structural polymorphisms and C-1018G promoter variant of the 5-HT(1A) receptor gene as putative risk factors in major depression. Mol Psychiatry 2002; 7: 930–932.

    Article  CAS  PubMed  Google Scholar 

  75. Arias B, Catalan R, Gasto C, Gutierrez B, Fananas L . Evidence for a combined genetic effect of the 5-HT1A receptor and serotonin transporter genes in the clinical outcome of major depressive patients treated with citalopram. J Psychopharmacol 2005; 19: 166–172.

    Article  CAS  PubMed  Google Scholar 

  76. Serretti A, Artioli P, Lorenzi C, Pirovano A, Tubazio V, Zanardi R . The C(-1019)G polymorphism of the 5-HT1A gene promoter and antidepressant response in mood disorders: preliminary findings. Int J Neuropsychopharmacol 2004; 7: 453–460.

    Article  CAS  PubMed  Google Scholar 

  77. Lemonde S, Du L, Bakish D, Hrdina P, Albert PR . Association of the C(1019)G 5-HT1A functional promoter polymorphism with antidepressant response. Int J Neuropsychopharmacol 2004; 7: 501–506.

    Article  CAS  PubMed  Google Scholar 

  78. Suzuki Y, Sawamura K, Someya T . The effects of a 5-hydroxytryptamine 1A receptor gene polymorphism on the clinical response to fluvoxamine in depressed patients. Pharmacogenomics J 2004; 4: 283–286.

    Article  CAS  PubMed  Google Scholar 

  79. Levin GM, Bowles TM, Ehret MJ, Langaee T, Tan JY, Johnson JA et al. Assessment of human serotonin 1A receptor polymorphisms and SSRI responsiveness. Mol Diagn Ther 2007; 11: 155–160.

    Article  CAS  PubMed  Google Scholar 

  80. Baune BT, Hohoff C, Roehrs T, Deckert J, Arolt V, Domschke K . Serotonin receptor 1A −1019C/G variant: impact on antidepressant pharmacoresponse in melancholic depression?. Neurosci Lett 2008; 436: 111–115.

    Article  CAS  PubMed  Google Scholar 

  81. Drago A, Ronchi DD, Serretti A . 5-HT1A gene variants and psychiatric disorders: a review of current literature and selection of SNPs for future studies. Int J Neuropsychopharmacol 2007; 1–21.

  82. Parsey RV, Oquendo MA, Simpson NR, Ogden RT, Van Heertum R, Arango V et al. Effects of sex, age, and aggressive traits in man on brain serotonin 5-HT1A receptor binding potential measured by PET using [C-11]WAY-100635. Brain Res 2002; 954: 173–182.

    Article  CAS  PubMed  Google Scholar 

  83. Chen K, Yang W, Grimsby J, Shih JC . The human 5-HT2 receptor is encoded by a multiple intron-exon gene. Brain Res Mol Brain Res 1992; 14: 20–26.

    Article  CAS  PubMed  Google Scholar 

  84. Campbell D, Sundaramurthy D, Markham A, Pieri L . Fine mapping of the human 5-HTR2a gene to chromosome 13q14 and identification of two highly polymorphic linked markers suitable for association studies in psychiatric disorders. Genet Test 1997; 1: 297–299.

    Article  CAS  PubMed  Google Scholar 

  85. Spurlock G, Heils A, Holmans P, Williams J, D'Souza UM, Cardno A et al. A family based association study of T102C polymorphism in 5HT2A and schizophrenia plus identification of new polymorphisms in the promoter. Mol Psychiatry 1998; 3: 42–49.

    Article  CAS  PubMed  Google Scholar 

  86. Myers RL, Airey DC, Manier DH, Shelton RC, Sanders-Bush E . Polymorphisms in the regulatory region of the human serotonin 5-HT(2A) receptor gene (HTR2A) influence gene expression. Biol Psychiatry 2007; 61: 167–173.

    Article  CAS  PubMed  Google Scholar 

  87. Polesskaya OO, Sokolov BP . Differential expression of the ‘C’ and ‘T’ alleles of the 5-HT2A receptor gene in the temporal cortex of normal individuals and schizophrenics. J Neurosci Res 2002; 67: 812–822.

    Article  CAS  PubMed  Google Scholar 

  88. Parsons MJ, D'Souza UM, Arranz MJ, Kerwin RW, Makoff AJ . The −1438A/G polymorphism in the 5-hydroxytryptamine type 2A receptor gene affects promoter activity. Biol Psychiatry 2004; 56: 406–410.

    Article  CAS  PubMed  Google Scholar 

  89. Bray NJ, Buckland PR, Hall H, Owen MJ, O'Donovan MC . The serotonin-2A receptor gene locus does not contain common polymorphism affecting mRNA levels in adult brain. Mol Psychiatry 2004; 9: 109–114.

    Article  CAS  PubMed  Google Scholar 

  90. Choi MJ, Kang RH, Ham BJ, Jeong HY, Lee MS . Serotonin receptor 2A gene polymorphism (−1438A/G) and short-term treatment response to citalopram. Neuropsychobiology 2005; 52: 155–162.

    Article  CAS  PubMed  Google Scholar 

  91. Cusin C, Serretti A, Zanardi R, Lattuada E, Rossini D, Lilli R et al. Influence of monoamine oxydase A and serotonin receptor 2A polymorphisms in SSRIs antidepressant activity. Int J Neuropsychopharmacol 2002; 5: 27–35.

    Article  CAS  PubMed  Google Scholar 

  92. Sato K, Yoshida K, Takahashi H, Ito K, Kamata M, Higuchi H et al. Association between −1438G/A promoter polymorphism in the 5-HT(2A) receptor gene and fluvoxamine response in Japanese patients with major depressive disorder. Neuropsychobiology 2002; 46: 136–140.

    Article  CAS  PubMed  Google Scholar 

  93. Yoshida K, Naito S, Takahashi H, Sato K, Ito K, Kamata M et al. Monoamine oxidase A gene polymorphism, 5-HT 2A receptor gene polymorphism and incidence of nausea induced by fluvoxamine. Neuropsychobiology 2003; 48: 10–13.

    Article  CAS  PubMed  Google Scholar 

  94. Murphy Jr GM, Kremer C, Rodrigues HE, Schatzberg AF . Pharmacogenetics of antidepressant medication intolerance. Am J Psychiatry 2003; 160: 1830–1835.

    Article  PubMed  Google Scholar 

  95. Suzuki Y, Sawamura K, Someya T . Polymorphisms in the 5-hydroxytryptamine 2A receptor and CytochromeP4502D6 genes synergistically predict fluvoxamine-induced side effects in japanese depressed patients. Neuropsychopharmacology 2006; 31: 825–831.

    Article  CAS  PubMed  Google Scholar 

  96. McMahon FJ, Buervenich S, Charney D, Lipsky R, Rush AJ, Wilson AF et al. Variation in the gene encoding the serotonin 2A receptor is associated with outcome of antidepressant treatment. Am J Hum Genet 2006; 78: 804–814. E-pub March 2006 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bishop JR, Moline J, Ellingrod VL, Schultz SK, Clayton AH . Serotonin 2A −1438G/A and G-protein Beta3 subunit C825T polymorphisms in patients with depression and SSRI-associated sexual side-effects. Neuropsychopharmacology 2006; 31: 2281–2288.

    Article  CAS  PubMed  Google Scholar 

  98. Kang RH, Choi MJ, Paik JW, Hahn SW, Lee MS . Effect of serotonin receptor 2A gene polymorphism on mirtazapine response in major depression. Int J Psychiatry Med 2007; 37: 315–329.

    Article  PubMed  Google Scholar 

  99. Serretti A, Drago A, De Ronchi D . HTR2A gene variants and psychiatric disorders: a review of current literature and selection of SNPs for future studies. Curr Med Chem 2007; 14: 2053–2069.

    Article  CAS  PubMed  Google Scholar 

  100. Miyake A, Mochizuki S, Takemoto Y, Akuzawa S . Molecular cloning of human 5-hydroxytryptamine3 receptor: heterogeneity in distribution and function among species. Mol Pharmacol 1995; 48: 407–416.

    CAS  PubMed  Google Scholar 

  101. Bruss M, Gothert M, Hayer M, Bonisch H . Molecular cloning of alternatively spliced human 5-HT3 receptor cDNAs. Ann N Y Acad Sci 1998; 861: 234–235.

    Article  CAS  PubMed  Google Scholar 

  102. Belelli D, Balcarek JM, Hope AG, Peters JA, Lambert JJ, Blackburn TP . Cloning and functional expression of a human 5-hydroxytryptamine type 3AS receptor subunit. Mol Pharmacol 1995; 48: 1054–1062.

    CAS  PubMed  Google Scholar 

  103. Davies PA, Pistis M, Hanna MC, Peters JA, Lambert JJ, Hales TG et al. The 5-HT3B subunit is a major determinant of serotonin-receptor function. Nature 1999; 397: 359–363.

    Article  CAS  PubMed  Google Scholar 

  104. Dubin AE, Huvar R, D'Andrea MR, Pyati J, Zhu JY, Joy KC et al. The pharmacological and functional characteristics of the serotonin 5-HT(3A) receptor are specifically modified by a 5-HT(3B) receptor subunit. J Biol Chem 1999; 274: 30799–30810.

    Article  CAS  PubMed  Google Scholar 

  105. Tremblay PB, Kaiser R, Sezer O, Rosler N, Schelenz C, Possinger K et al. Variations in the 5-hydroxytryptamine type 3B receptor gene as predictors of the efficacy of antiemetic treatment in cancer patients. J Clin Oncol 2003; 21: 2147–2155.

    Article  CAS  PubMed  Google Scholar 

  106. Tzvetkov MV, Meineke C, Oetjen E, Hirsch-Ernst K, Brockmoller J . Tissue-specific alternative promoters of the serotonin receptor gene HTR3B in human brain and intestine. Gene 2007; 386: 52–62.

    Article  CAS  PubMed  Google Scholar 

  107. Sugai T, Suzuki Y, Sawamura K, Fukui N, Inoue Y, Someya T . The effect of 5-hydroxytryptamine 3A and 3B receptor genes on nausea induced by paroxetine. Pharmacogenomics J 2006; 6: 351–356.

    Article  CAS  PubMed  Google Scholar 

  108. Wu WH, Huo SJ, Cheng CY, Hong CJ, Tsai SJ . Association Study of the 5-HT(6) receptor polymorphism (C267T) and symptomatology and antidepressant response in major depressive disorders. Neuropsychobiology 2001; 44: 172–175.

    Article  CAS  PubMed  Google Scholar 

  109. Lee SH, Lee KJ, Lee HJ, Ham BJ, Ryu SH, Lee MS . Association between the 5-HT6 receptor C267T polymorphism and response to antidepressant treatment in major depressive disorder. Psychiatry Clin Neurosci 2005; 59: 140–145.

    Article  CAS  PubMed  Google Scholar 

  110. Kohen R, Metcalf MA, Khan N, Druck T, Huebner K, Lachowicz JE et al. Cloning, characterization, and chromosomal localization of a human 5-HT6 serotonin receptor. J Neurochem 1996; 66: 47–56.

    Article  CAS  PubMed  Google Scholar 

  111. Purohit A, Herrick-Davis K, Teitler M . Creation, expression, and characterization of a constitutively active mutant of the human serotonin 5-HT6 receptor. Synapse 2003; 47: 218–224.

    Article  CAS  PubMed  Google Scholar 

  112. Craig SP, Boularand S, Darmon MC, Mallet J, Craig IW . Localization of human tryptophan hydroxylase (TPH) to chromosome 11p15.3–p14 by in situ hybridization. Cytogenet Cell Genet 1991; 56: 157–159.

    Article  CAS  PubMed  Google Scholar 

  113. Walther DJ, Peter JU, Bashammakh S, Hortnagl H, Voits M, Fink H et al. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 2003; 299: 76.

    Article  CAS  PubMed  Google Scholar 

  114. Zill P, Buttner A, Eisenmenger W, Moller HJ, Ackenheil M, Bondy B . Analysis of tryptophan hydroxylase I and II mRNA expression in the human brain: a post-mortem study. J Psychiatr Res 2007; 41: 168–173.

    Article  PubMed  Google Scholar 

  115. Nakamura K, Sugawara Y, Sawabe K, Ohashi A, Tsurui H, Xiu Y et al. Late developmental stage-specific role of tryptophan hydroxylase 1 in brain serotonin levels. J Neurosci 2006; 26: 530–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nielsen DA, Jenkins GL, Stefanisko KM, Jefferson KK, Goldman D . Sequence, splice site and population frequency distribution analyses of the polymorphic human tryptophan hydroxylase intron 7. Brain Res Mol Brain Res 1997; 45: 145–148.

    Article  CAS  PubMed  Google Scholar 

  117. Jonsson EG, Goldman D, Spurlock G, Gustavsson JP, Nielsen DA, Linnoila M et al. Tryptophan hydroxylase and catechol-O-methyltransferase gene polymorphisms: relationships to monoamine metabolite concentrations in CSF of healthy volunteers. Eur Arch Psychiatry Clin Neurosci 1997; 247: 297–302.

    Article  CAS  PubMed  Google Scholar 

  118. Sun HS, Fann CS, Lane HY, Chang YT, Chang CJ, Liu YL et al. A functional polymorphism in the promoter region of the tryptophan hydroxylase gene is associated with alcohol dependence in one aboriginal group in Taiwan. Alcohol Clin Exp Res 2005; 29: 1–7.

    Article  PubMed  Google Scholar 

  119. Serretti A, Zanardi R, Rossini D, Cusin C, Lilli R, Smeraldi E . Influence of tryptophan hydroxylase and serotonin transporter genes on fluvoxamine antidepressant activity. Mol Psychiatry 2001; 6: 586–592.

    Article  CAS  PubMed  Google Scholar 

  120. Serretti A, Zanardi R, Cusin C, Rossini D, Lorenzi C, Smeraldi E . Tryptophan hydroxylase gene associated with paroxetine antidepressant activity. Eur Neuropsychopharmacol 2001; 11: 375–380.

    Article  CAS  PubMed  Google Scholar 

  121. Kato M, Wakeno M, Okugawa G, Fukuda T, Azuma J, Kinoshita T et al. No association of TPH1 218A/C polymorphism with treatment response and intolerance to SSRIs in Japanese patients with major depression. Neuropsychobiology 2007; 56: 167–171.

    Article  PubMed  Google Scholar 

  122. Ham BJ, Lee BC, Paik JW, Kang RH, Choi MJ, Choi IG et al. Association between the tryptophan hydroxylase-1 gene A218C polymorphism and citalopram antidepressant response in a Korean population. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31: 104–107.

    Article  CAS  PubMed  Google Scholar 

  123. Ham BJ, Lee MS, Lee HJ, Kang RH, Han CS, Choi MJ et al. No association between the tryptophan hydroxylase gene polymorphism and major depressive disorders and antidepressant response in a Korean population. Psychiatr Genet 2005; 15: 299–301.

    Article  PubMed  Google Scholar 

  124. Yoshida K, Naito S, Takahashi H, Sato K, Ito K, Kamata M et al. Monoamine oxidase: a gene polymorphism, tryptophan hydroxylase gene polymorphism and antidepressant response to fluvoxamine in Japanese patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26: 1279–1283.

    Article  CAS  PubMed  Google Scholar 

  125. Garriock HA, Allen JJ, Delgado P, Nahaz Z, Kling MA, Carpenter L et al. Lack of association of TPH2 exon XI polymorphisms with major depression and treatment resistance. Mol Psychiatry 2005; 10: 976–977.

    Article  CAS  PubMed  Google Scholar 

  126. Zill P, Baghai TC, Zwanzger P, Schule C, Eser D, Rupprecht R et al. SNP and haplotype analysis of a novel tryptophan hydroxylase isoform (TPH2) gene provide evidence for association with major depression. Am J Hum Genet 2004; 74: 1294–1302; e-pub April 2004, 1229.

    Article  Google Scholar 

  127. Zhou Z, Roy A, Lipsky R, Kuchipudi K, Zhu G, Taubman J et al. Haplotype-based linkage of tryptophan hydroxylase 2 to suicide attempt, major depression, and cerebrospinal fluid 5-hydroxyindoleacetic acid in 4 populations. Arch Gen Psychiatry 2005; 62: 1109–1118.

    Article  CAS  PubMed  Google Scholar 

  128. Zhang X, Beaulieu JM, Sotnikova TD, Gainetdinov RR, Caron MG . Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science 2004; 305: 217.

    Article  CAS  PubMed  Google Scholar 

  129. Zhang X, Gainetdinov RR, Beaulieu J-M, Sotnikova TD, Burch LH, Williams RB et al. Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron 2005; 45: 11–16.

    Article  CAS  PubMed  Google Scholar 

  130. Scheuch K, Lautenschlager M, Grohmann M, Stahlberg S, Kirchheiner J, Zill P et al. Characterization of a functional promoter polymorphism of the human tryptophan hydroxylase 2 gene in serotonergic raphe neurons. Biol Psychiatry 2007; 62: 1288–1294.

    Article  CAS  PubMed  Google Scholar 

  131. Lim JE, Pinsonneault J, Sadee W, Saffen D . Tryptophan hydroxylase 2 (TPH2) haplotypes predict levels of TPH2 mRNA expression in human pons. Mol Psychiatry 2007; 12: 491–501.

    Article  CAS  PubMed  Google Scholar 

  132. de Lara CL, Brezo J, Rouleau G, Lesage A, Dumont M, Alda M et al. Effect of tryptophan hydroxylase-2 gene variants on suicide risk in major depression. Biol Psychiatry 2007; 62: 72–80.

    Article  CAS  Google Scholar 

  133. Gutknecht L, Jacob C, Strobel A, Kriegebaum C, Muller J, Zeng Y et al. Tryptophan hydroxylase-2 gene variation influences personality traits and disorders related to emotional dysregulation. Int J Neuropsychopharmacol 2007; 10: 309–320.

    Article  CAS  PubMed  Google Scholar 

  134. Bruss M, Kunz J, Lingen B, Bonisch H . Chromosomal mapping of the human gene for the tricyclic antidepressant-sensitive noradrenaline transporter. Hum Genet 1993; 91: 278–280.

    Article  CAS  PubMed  Google Scholar 

  135. Muller DJ, Schulze TG, Macciardi F, Ohlraun S, Gross MM, Scherk H et al. Moclobemide response in depressed patients: association study with a functional polymorphism in the monoamine oxidase A promoter. Pharmacopsychiatry 2002; 35: 157–158.

    Article  PubMed  Google Scholar 

  136. Yu YW, Tsai SJ, Hong CJ, Chen TJ, Chen MC, Yang CW . Association study of a monoamine oxidase a gene promoter polymorphism with major depressive disorder and antidepressant response. Neuropsychopharmacology 2005; 30: 1719–1723.

    Article  CAS  PubMed  Google Scholar 

  137. Tadic A, Muller MJ, Rujescu D, Kohnen R, Stassen HH, Dahmen N et al. The MAOA T941G polymorphism and short-term treatment response to mirtazapine and paroxetine in major depression. Am J Med Genet B Neuropsychiatr Genet 2007; 144: 325–331.

    Article  CAS  Google Scholar 

  138. Szegedi A, Rujescu D, Tadic A, Muller MJ, Kohnen R, Stassen HH et al. The catechol-O-methyltransferase Val108/158Met polymorphism affects short-term treatment response to mirtazapine, but not to paroxetine in major depression. Pharmacogenomics J 2005; 5: 49–53.

    Article  CAS  PubMed  Google Scholar 

  139. Arias B, Serretti A, Lorenzi C, Gasto C, Catalan R, Fananas L . Analysis of COMT gene (Val 158 Met polymorphism) in the clinical response to SSRIs in depressive patients of European origin. J Affect Disord 2006; 90: 251–256.

    Article  CAS  PubMed  Google Scholar 

  140. Yoshida K, Higuchi H, Takahashi H, Kamata M, Sato K, Inoue K et al. Influence of the tyrosine hydroxylase val81met polymorphism and catechol-O-methyltransferase val158met polymorphism on the antidepressant effect of milnacipran. Hum Psychopharmacol 2008; 23: 121–128.

    Article  CAS  PubMed  Google Scholar 

  141. Sabol SZ, Hu S, Hamer D . A functional polymorphism in the monoamine oxidase A gene promoter. Hum Genet 1998; 103: 273–279.

    Article  CAS  PubMed  Google Scholar 

  142. Grossman MH, Emanuel BS, Budarf ML . Chromosomal mapping of the human catechol-O-methyltransferase gene to 22q11.1–q11.2. Genomics 1992; 12: 822–825.

    Article  CAS  PubMed  Google Scholar 

  143. Lachman HM, Morrow B, Shprintzen R, Veit S, Parsia SS, Faedda G et al. Association of codon 108/158 catechol-O-methyltransferase gene polymorphism with the psychiatric manifestations of velo-cardio-facial syndrome. Am J Med Genet 1996; 67: 468–472.

    Article  CAS  PubMed  Google Scholar 

  144. Mannisto P, Kaakkola S . Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev 2005; 51: 593–628.

    Google Scholar 

  145. Craddock N, O'Donovan MC, Owen MJ . Genes for schizophrenia and bipolar disorder? Implications for psychiatric nosology. Schizophr Bull 2006; 32: 9–16.

    Article  PubMed  Google Scholar 

  146. Ansari-Lari M, Muzny D, Lu J, Lu F, Lilley C, Spanos S et al. A gene-rich cluster between the CD4 and triosephosphate isomerase genes at human chromosome 12p13. Genome Res 1996; 6: 314–326.

    Article  CAS  PubMed  Google Scholar 

  147. Siffert W, Rosskopf D, Siffert G, Busch S, Moritz A, Erbel R et al. Association of a human G-protein beta3 subunit variant with hypertension. Nat Genet 1998; 18: 45–48.

    Article  CAS  PubMed  Google Scholar 

  148. Serretti A, Lorenzi C, Cusin C, Zanardi R, Lattuada E, Rossini D et al. SSRIs antidepressant activity is influenced by Gbeta3 variants. Eur Neuropsychopharmacol 2003; 13: 117–122.

    Article  CAS  PubMed  Google Scholar 

  149. Lee HJ, Cha JH, Ham BJ, Han CS, Kim YK, Lee SH et al. Association between a G-protein beta3 subunit gene polymorphism and the symptomatology and treatment responses of major depressive disorders. Pharmacogenomics J 2004; 4: 29–33.

    Article  CAS  PubMed  Google Scholar 

  150. Zill P, Baghai TC, Zwanzger P, Schule C, Minov C, Riedel M et al. Evidence for an association between a G-protein beta3-gene variant with depression and response to antidepressant treatment. Neuroreport 2000; 11: 1893–1897.

    Article  CAS  PubMed  Google Scholar 

  151. Kato M, Wakeno M, Okugawa G, Fukuda T, Takekita Y, Hosoi Y et al. Antidepressant response and intolerance to SSRI is not influenced by G-protein beta3 subunit gene C825 T polymorphism in Japanese major depressive patients. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32: 1041–1044.

    Article  CAS  PubMed  Google Scholar 

  152. Kang RH, Hahn SW, Choi MJ, Lee MS . Relationship between G-protein beta-3 subunit C825T polymorphism and mirtazapine responses in Korean patients with major depression. Neuropsychobiology 2007; 56: 1–5.

    Article  CAS  PubMed  Google Scholar 

  153. Wilkie MJ, Smith D, Reid IC, Day RK, Matthews K, Wolf CR et al. A splice site polymorphism in the G-protein beta subunit influences antidepressant efficacy in depression. Pharmacogenet Genomics 2007; 17: 207–215.

    Article  CAS  PubMed  Google Scholar 

  154. Duman RS . Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromolecular Med 2004; 5: 11–25.

    Article  CAS  PubMed  Google Scholar 

  155. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 2003; 112: 257–269.

    Article  CAS  PubMed  Google Scholar 

  156. Tsai SJ, Cheng CY, Yu YW, Chen TJ, Hong CJ . Association study of a brain-derived neurotrophic-factor genetic polymorphism and major depressive disorders, symptomatology, and antidepressant response. Am J Med Genet 2003; 123B: 19–22.

    Article  PubMed  Google Scholar 

  157. Choi MJ, Kang RH, Lim SW, Oh KS, Lee MS . Brain-derived neurotrophic factor gene polymorphism (Val66Met) and citalopram response in major depressive disorder. Brain Res 2006; 1118: 176–182.

    Article  CAS  PubMed  Google Scholar 

  158. Yoshida K, Higuchi H, Kamata M, Takahashi H, Inoue K, Suzuki T et al. The G196A polymorphism of the brain-derived neurotrophic factor gene and the antidepressant effect of milnacipran and fluvoxamine. J Psychopharmacol 2007; 21: 650–656.

    Article  CAS  PubMed  Google Scholar 

  159. Gratacos M, Soria V, Urretavizcaya M, Gonzalez JR, Crespo JM, Bayes M et al. A brain-derived neurotrophic factor (BDNF) haplotype is associated with antidepressant treatment outcome in mood disorders. Pharmacogenomics J 2008; 8: 101–112.

    Article  CAS  PubMed  Google Scholar 

  160. Baghai TC, Schule C, Zwanzger P, Minov C, Schwarz MJ, de Jonge S et al. Possible influence of the insertion/deletion polymorphism in the angiotensin I-converting enzyme gene on therapeutic outcome in affective disorders. Mol Psychiatry 2001; 6: 258–259.

    Article  CAS  PubMed  Google Scholar 

  161. Hong CJ, Wang YC, Tsai SJ . Association study of angiotensin I-converting enzyme polymorphism and symptomatology and antidepressant response in major depressive disorders. J Neural Transm 2002; 109: 1209–1214.

    Article  CAS  PubMed  Google Scholar 

  162. Baghai TC, Schule C, Zill P, Deiml T, Eser D, Zwanzger P et al. The angiotensin I converting enzyme insertion/deletion polymorphism influences therapeutic outcome in major depressed women, but not in men. Neurosci Lett 2004; 363: 38–42.

    Article  CAS  PubMed  Google Scholar 

  163. Binder EB, Salyakina D, Lichtner P, Wochnik GM, Ising M, Putz B et al. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet 2004; 36: 1319–1325.

    Article  CAS  PubMed  Google Scholar 

  164. Tsai SJ, Hong CJ, Chen TJ, Yu YW . Lack of supporting evidence for a genetic association of the FKBP5 polymorphism and response to antidepressant treatment. Am J Med Genet B Neuropsychiatr Genet 2007; 144: 1097–1098.

    Article  CAS  Google Scholar 

  165. Papiol S, Arias B, Gasto C, Gutierrez B, Catalan R, Fananas L . Genetic variability at HPA axis in major depression and clinical response to antidepressant treatment. J Affect Disord 2007; 104: 83–90.

    Article  CAS  PubMed  Google Scholar 

  166. Lekman M, Laje G, Charney D, Rush AJ, Wilson AF, Sorant AJ et al. The FKBP5-gene in depression and treatment response-an association Study in the sequenced treatment alternatives to relieve depression (STAR*D) cohort. Biol Psychiatry 2008; 63: 1103–1110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Licinio J, O'Kirwan F, Irizarry K, Merriman B, Thakur S, Jepson R et al. Association of a corticotropin-releasing hormone receptor 1 haplotype and antidepressant treatment response in Mexican-Americans. Mol Psychiatry 2004; 9: 1075–1082.

    Article  CAS  PubMed  Google Scholar 

  168. Liu Z, Zhu F, Wang G, Xiao Z, Tang J, Liu W et al. Association study of corticotropin-releasing hormone receptor1 gene polymorphisms and antidepressant response in major depressive disorders. Neurosci Lett 2007; 414: 155–158.

    Article  CAS  PubMed  Google Scholar 

  169. Zill P, Baghai TC, Engel R, Zwanzger P, Schule C, Eser D et al. The dysbindin gene in major depression: an association study. Am J Med Genet 2004; 129B: 59–63.

    Article  Google Scholar 

  170. Pae CU, Serretti A, Mandelli L, De Ronchi D, Patkar AA, Jun TY et al. Dysbindin associated with selective serotonin reuptake inhibitor antidepressant efficacy. Pharmacogenet Genomics 2007; 17: 69–75.

    Article  CAS  PubMed  Google Scholar 

  171. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F . An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 1990; 86: 1343–1346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Arinami T, Li L, Mitsushio H, Itokawa M, Hamaguchi H, Toru M . An insertion/deletion polymorphism in the angiotensin converting enzyme gene is associated with both brain substance P contents and affective disorders. Biol Psychiatry 1996; 40: 1122–1127.

    Article  CAS  PubMed  Google Scholar 

  173. Seymour P, Schmidt A, Schulz D . The pharmacology of CP-154 526, a non-peptide antagonist of the CRH1 receptor: a review. CNS Drug Rev 2003; 9: 57–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Overstreet D, Griebel G . Antidepressant-like effects of CRF1 receptor antagonist SSR125543 in an animal model of depression. Eur J Pharmacol 2004; 497: 49–53.

    Article  CAS  PubMed  Google Scholar 

  175. Benson MA, Sillitoe RV, Blake DJ . Schizophrenia genetics: dysbindin under the microscope. Trends Neurosci 2004; 27: 516–519.

    Article  CAS  PubMed  Google Scholar 

  176. Numakawa T, Yagasaki Y, Ishimoto T, Okada T, Suzuki T, Iwata N et al. Evidence of novel neuronal functions of dysbindin, a susceptibility gene for schizophrenia. Hum Mol Genet 2004; 13: 2699–2708.

    Article  CAS  PubMed  Google Scholar 

  177. Janssen P, Prins NH, Meulemans AL, Lefebvre RA . Pharmacological characterization of the 5-HT receptors mediating contraction and relaxation of canine isolated proximal stomach smooth muscle. Br J Pharmacol 2002; 136: 321–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Kato M, Fukuda T, Serretti A, Wakeno M, Okugawa G, Ikenaga Y et al. ABCB1 (MDR1) gene polymorphisms are associated with the clinical response to paroxetine in patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32: 398–404.

    Article  CAS  PubMed  Google Scholar 

  179. Uhr M, Tontsch A, Namendorf C, Ripke S, Lucae S, Ising M et al. Polymorphisms in the drug transporter gene ABCB1 predict antidepressant treatment response in depression. Neuron 2008; 57: 203–209.

    Article  CAS  PubMed  Google Scholar 

  180. Serretti A, Smeraldi E . Neural network analysis in pharmacogenetics of mood disorders. BMC Med Genet 2004; 5: 27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Ritchie MD, White BC, Parker JS, Hahn LW, Moore JH . Optimization of neural network architecture using genetic programming improves detection and modeling of gene-gene interactions in studies of human diseases. BMC Bioinformatics 2003; 4: 28.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Kato M, Zanardi R, Rossini D, De Ronchi D, Okugawa G, Kinoshita T et al. 5-HT2A gene variants influence specific and different aspects of antidepressant response in Japanese and Italian mood disorder patients. Psychiatry Res (in press).

  183. Kirmayer LJ . Cultural variations in the clinical presentation of depression and anxiety: implications for diagnosis and treatment. J Clin Psychiatry 2001; 62 (Suppl 13): 22–28; discussion 29–30.

    PubMed  Google Scholar 

  184. Koenig HG, George LK, Peterson BL . Religiosity and remission of depression in medically ill older patients. Am J Psychiatry 1998; 155: 536–542.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Toshihiko Kinoshita for his contribution. This study was supported in part by the Japanese Society of Clinical Pharmacology and Therapeutics, and Fondazione del Monte di Bologna e Ravenna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Serretti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, M., Serretti, A. Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder. Mol Psychiatry 15, 473–500 (2010). https://doi.org/10.1038/mp.2008.116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2008.116

Keywords

This article is cited by

Search

Quick links