Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Polymorphisms in SREBF1 and SREBF2, two antipsychotic-activated transcription factors controlling cellular lipogenesis, are associated with schizophrenia in German and Scandinavian samples

Abstract

Several studies have reported structural brain abnormalities, decreased myelination and oligodendrocyte dysfunction in schizophrenia. In the central nervous system, glia-derived de novo synthesized cholesterol is essential for both myelination and synaptogenesis. Previously, we demonstrated in glial cell lines that antipsychotic drugs induce the expression of genes involved in cholesterol and fatty acids biosynthesis through activation of the sterol regulatory element binding protein (SREBP) transcription factors, encoded by the sterol regulatory element binding transcription factor 1 (SREBF1) and sterol regulatory element binding transcription factor 2 (SREBF2) genes. Considering the importance of these factors in the lipid biosynthesis and their possible involvement in antipsychotic drug effects, we hypothesized that genetic variants of SREBF1 and/or SREBF2 could affect schizophrenia susceptibility. We therefore conducted a HapMap-based association study in a large German sample, and identified association between schizophrenia and five markers in SREBF1 and five markers in SREBF2. Follow-up studies in two independent samples of Danish and Norwegian origin (part of the Scandinavian collaboration of psychiatric etiology study, SCOPE) replicated the association for the five SREBF1 markers and for two markers in SREBF2. A combined analysis of all samples resulted in highly significant genotypic P-values of 9 × 10−4 for SREBF1 (rs11868035, odd ration (OR)=1.26, 95% confidence interval (CI) (1.09–1.45)) and 4 × 10−5 for SREBF2 (rs1057217, OR=1.39, 95% CI (1.19–1.63)). This finding strengthens the hypothesis that SREBP-controlled cholesterol biosynthesis is involved in the etiology of schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Carter CJ . Schizophrenia susceptibility genes converge on interlinked pathways related to glutamatergic transmission and long-term potentiation, oxidative stress and oligodendrocyte viability. Schizophr Res 2006; 86: 1–14.

    Article  CAS  Google Scholar 

  2. Davis KL, Stewart DG, Friedman JI, Buchsbaum M, Harvey PD, Hof PR et al. White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch Gen Psychiatry 2003; 60: 443–456.

    Article  Google Scholar 

  3. Karoutzou G, Emrich HM, Dietrich DE . The myelin–pathogenesis puzzle in schizophrenia: a literature review. Mol Psychiatry 2008; 13: 245–260.

    Article  CAS  Google Scholar 

  4. Le-Niculescu H, Balaraman Y, Patel S, Tan J, Sidhu K, Jerome RE et al. Towards understanding the schizophrenia code: an expanded convergent functional genomics approach. Am J Med Genet B Neuropsychiatr Genet 2007; 144: 129–158.

    Article  Google Scholar 

  5. Ferno J, Raeder MB, Vik-Mo AO, Skrede S, Glambek M, Tronstad KJ et al. Antipsychotic drugs activate SREBP-regulated expression of lipid biosynthetic genes in cultured human glioma cells: a novel mechanism of action? Pharmacogenomics 2005; 5: 298–304.

    Article  CAS  Google Scholar 

  6. Ferno J, Skrede S, Vik-Mo AO, Håvik B, Steen VM . Drug-induced activation of SREBP-controlled lipogenic gene expression in CNS-related cell lines: marked differences between various antipsychotic drugs. BMC Neurosci 2006; 7: 69.

    Article  Google Scholar 

  7. Edwards PA, Tabor D, Kast HR, Venkateswaran A . Regulation of gene expression by SREBP and SCAP. Biochim Biophys Acta 2000; 1529: 103–113.

    Article  CAS  Google Scholar 

  8. Horton JD, Shimomura I, Brown MS, Hammer RE, Goldstein JL, Shimano H . Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. J Clin Invest 1998; 101: 2331–2339.

    Article  CAS  Google Scholar 

  9. Garver DL, Holcomb JA, Christensen JD . Compromised myelin integrity during psychosis with repair during remission in drug-responding schizophrenia. Int J Neuropsychopharmacol 2008; 11: 49–61.

    Article  CAS  Google Scholar 

  10. Dietschy JM, Turley SD . Thematic review series: brain lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res 2004; 45: 1375–1397.

    Article  CAS  Google Scholar 

  11. Shimano H, Horton JD, Shimomura I, Hammer RE, Brown MS, Goldstein JL . Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J Clin Invest 1997; 99: 846–854.

    Article  CAS  Google Scholar 

  12. American Psychiatric Association, Committee on Nomenclature and Statistics. Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association: Washington, 1994.

  13. First MB, Spitzer RL, Gibbon M, Williams JBW . Structured Clinical Interview for DSM-IV Axis I Disorders. Patient ed. Biometrics Research Department, New York State Psychiatric Institute: New York, 1997.

    Google Scholar 

  14. Farmer AE, Wessely S, Castle D, McGuffin P . Methodological issues in using a polydiagnostic approach to define psychotic illness. Br J Psychiatry 1992; 161: 824–830.

    Article  CAS  Google Scholar 

  15. Leckman JF, Sholomskas D, Thompson WD, Belanger A, Weissman MM . Best estimate of lifetime psychiatric diagnosis: a methodological study. Arch Gen Psychiatry 1982; 39: 879–883.

    Article  CAS  Google Scholar 

  16. Miller SA, Dykes DD, Polesky HF . A simple salting out procedure for extracting DNA from human nucleated cells. Nucl Acids Res 1988; 16: 1215.

    Article  CAS  Google Scholar 

  17. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  18. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225–2229.

    Article  CAS  Google Scholar 

  19. Zogopoulos G, Ha KC, Naqib F, Moore S, Kim H, Montpetit A et al. Germ-line DNA copy number variation frequencies in a large North American population. Hum Genet 2007; 122: 345–353.

    Article  CAS  Google Scholar 

  20. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y et al. Detection of large-scale variation in the human genome. Nat Genet 2004; 36: 949–951.

    Article  CAS  Google Scholar 

  21. Colella S, Yau C, Taylor JM, Mirza G, Butler H, Clouston P et al. QuantiSNP: an Objective Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping data. Nucl Acid Res 2007; 35: 2013–2025.

    Article  CAS  Google Scholar 

  22. Hansen T, Olsen L, Lindow M, Jakobsen KD, Ullum H, Jonsson E et al. Brain expressed microRNAs implicated in schizophrenia etiology. PLoS One 2007; 2: e873.

    Article  Google Scholar 

  23. Joober R, Benkelfat C, Toulouse A, Lafrenière RG, Lal S, Ajroud S et al. Analysis of 14 CAG repeat-containing genes in schizophrenia. Am J Med Genet 1999; 88: 694–699.

    Article  CAS  Google Scholar 

  24. Eberlé D, Clément K, Meyre D, Sahbatou M, Vaxillaire M, Le Gall A et al. SREBF-1 gene polymorphisms are associated with obesity and type 2 diabetes in French obese and diabetic cohorts. Diabetes 2004; 53: 2153–2157.

    Article  Google Scholar 

  25. Rios DL, Vargas AF, Torres MR, Zago AJ, Callegari-Jacques SM, Hutz MH . Interaction between SREBP-1a and APOB polymorphisms influences total and low-density lipoprotein cholesterol levels in patients with coronary artery disease. Clin Genet 2003; 63: 380–385.

    Article  CAS  Google Scholar 

  26. Salek L, Lutucuta S, Ballantyne CM, Gotto Jr AM, Marian AJ . Effects of SREBF-1a and SCAP polymorphisms on plasma levels of lipids, severity, progression and regression of coronary atherosclerosis and response to therapy with fluvastatin. J Mol Med 2002; 80: 737–744.

    Article  CAS  Google Scholar 

  27. Condra JA, Neibergs H, Wei W, Brennan MD . Evidence for two schizophrenia susceptibility genes on chromosome 22q13. Psychiatry Genet 2007; 17: 292–298.

    Article  Google Scholar 

  28. Miyakawa T, Sumiyoshi S, Deshimaru M, Suzuki T, Tomonari H . Electron microscopic study on schizophrenia. Mechanism of pathological changes. Acta Neuropathol 1972; 20: 67–77.

    Article  CAS  Google Scholar 

  29. Uranova N, Orlovskaya D, Vikhreva O, Zimina I, Kolomeets N, Vostrikov V et al. Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull 2001; 55: 597–610.

    Article  CAS  Google Scholar 

  30. Uranova NA, Vostrikov VM, Orlovskaya DD, Rachmanova VI . Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley neuropathology consortium. Schizophr Res 2004; 67: 269–275.

    Article  Google Scholar 

  31. Buchsbaum MS, Tang CY, Peled S, Gudbjartsson H, Lu D, Hazlett EA et al. MRI white matter diffusion anisotropy and PET metabolic rate in schizophrenia. Neuroreport 1998; 9: 425–430.

    Article  CAS  Google Scholar 

  32. Kanaan RA, Kim JS, Kaufmann WE, Pearlson GD, Barker GJ, McGuire PK . Diffusion tensor imaging in schizophrenia. Biol Psychiatry 2005; 58: 921–929.

    Article  Google Scholar 

  33. Kubicki M, McCarley RW, Shenton ME . Evidence for white matter abnormalities in schizophrenia. Curr Opin Psychiatry 2005; 18: 121–134.

    Article  Google Scholar 

  34. Lim KO, Adalsteinsson E, Spielman D, Sullivan EV, Rosenbloom MJ, Pfefferbaum A . Proton magnetic resonance spectroscopic imaging of cortical gray and white matter in schizophrenia. Arch Gen Psychiatry 1998; 55: 346–352.

    Article  CAS  Google Scholar 

  35. van Haren NE, Hulshoff Pol HE, Schnack HG, Cahn W, Mandl RC, Collins DL et al. Focal gray matter changes in schizophrenia across the course of the illness: a 5-year follow-up study. Neuropsychopharmacology 2007; 32: 2057–2066.

    Article  Google Scholar 

  36. Molina V, Reig S, Sanz J, Palomo T, Benito C, Sánchez J et al. Increase in gray matter and decrease in white matter volumes in the cortex during treatment with atypical neuroleptics in schizophrenia. Schizophr Res 2005; 80: 61–71.

    Article  Google Scholar 

  37. Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 2003; 362: 798–805.

    Article  CAS  Google Scholar 

  38. Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci 2001; 98: 4746–4751.

    Article  CAS  Google Scholar 

  39. Katsel P, Davis KL, Haroutunian V . Variations in myelin and oligodendrocyte-related gene expression across multiple brain regions in schizophrenia: a gene ontology study. Schizophr Res 2005; 79: 157–173.

    Article  Google Scholar 

  40. Aston C, Jiang L, Sokolov BP . Microarray analysis of postmortem temporal cortex from patients with schizophrenia. J Neurosci Res 2004; 77: 858–866.

    Article  CAS  Google Scholar 

  41. Aston C, Jiang L, Sokolov BP . Transcriptional profiling reveals evidence for signaling and oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder. Mol Psychiatry 2005; 10: 309–322.

    Article  CAS  Google Scholar 

  42. de Graaf-Peters VB, Hadders-Algra M . Ontogeny of the human central nervous system: what is happening when? Early Hum Dev 2006; 82: 257–266.

    Article  Google Scholar 

  43. Paus T, Zijdenbos A, Worsley K, Collins DL, Blumenthal J, Giedd JN et al. Structural maturation of neural pathways in children and adolescents: in vivo study. Science 1999; 283: 1908–1911.

    Article  CAS  Google Scholar 

  44. Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 1999; 2: 861–863.

    Article  CAS  Google Scholar 

  45. Bartzokis G, Beckson M, Lu PH, Nuechterlein KH, Edwards N, Mintz J . Age-related changes in frontal and temporal lobe volumes in men: a magnetic resonance imaging study. Arch Gen Psychiatry 2001; 58: 461–465.

    Article  CAS  Google Scholar 

  46. Bartzokis G . Schizophrenia: breakdown in the well-regulated lifelong process of brain development and maturation. Neuropsychopharmacology 2002; 27: 672–683.

    Article  Google Scholar 

  47. Saher G, Brügger B, Lappe-Siefke C, Möbius W, Tozawa R, Wehr MC et al. High cholesterol level is essential for myelin membrane growth. Nat Neurosci 2005; 8: 468–475.

    Article  CAS  Google Scholar 

  48. Horton JD, Goldstein JL, Brown MS . SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002; 109: 1125–1131.

    Article  CAS  Google Scholar 

  49. Loewen CJ, Levine TP . Cholesterol homeostasis: not until the SCAP lady INSIGs. Curr Biol 2002; 12: R779–R781.

    Article  CAS  Google Scholar 

  50. Leblanc SE, Srinivasan R, Ferri C, Mager GM, Gillian-Daniel AL, Wrabetz L et al. Regulation of cholesterol/lipid biosynthetic genes by Egr2/Krox20 during peripheral nerve myelination. J Neurochem 2005; 93: 737–748.

    Article  CAS  Google Scholar 

  51. Verheijen MH, Chrast R, Burrola P, Lemke G . Local regulation of fat metabolism in peripheral nerves. Genes Dev 2003; 17: 2450–2464.

    Article  CAS  Google Scholar 

  52. Sokolov BP . Oligodendroglial abnormalities in schizophrenia, mood disorders and substance abuse. Comorbidity, shared traits, or molecular phenocopies? Int J Neuropsychopharmacol 2007; 10: 547–555.

    Article  CAS  Google Scholar 

  53. Le-Niculescu H, McFarland MJ, Ogden CA, Balaraman Y, Patel S, Tan J et al. Phenomic, convergent functional genomic, and biomarker studies in a stress-reactive genetic animal model of bipolar disorder and co-morbid alcoholism. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 134–166.

    Article  CAS  Google Scholar 

  54. Xiao L, Xu H, Zhang Y, Wei Z, He J, Jiang W et al. Quetiapine facilitates oligodendrocyte development and prevents mice from myelin breakdown and behavioral changes. Mol Psychiatry 2008; 13: 697–708.

    Article  CAS  Google Scholar 

  55. Bartzokis G, Lu PH, Nuechterlein KH, Gitlin M, Doi C, Edwards N et al. Differential effects of typical and atypical antipsychotics on brain myelination in schizophrenia. Schizophr Res 2007; 93: 13–22.

    Article  Google Scholar 

  56. Huang TL, Lu CY . Correlations between weight changes and lipid profile changes in schizophrenic patients after antipsychotics therapy. Chang Gung Med J 2007; 30: 26–32.

    CAS  PubMed  Google Scholar 

  57. Procyshyn RM, Wasan KM, Thornton AE, Barr AM, Chen EY, Pomarol-Clotet E et al. Changes in serum lipids, independent of weight, are associated with changes in symptoms during long-term clozapine treatment. J Psychiatry Neurosci 2007; 32: 331–338.

    PubMed  PubMed Central  Google Scholar 

  58. Raeder MB, Ferno J, Glambek M, Stansberg C, Steen VM . Antidepressant drugs activate SREBP and up-regulate cholesterol and fatty acid biosynthesis in human glial cells. Neurosci Lett 2006; 395: 185–190.

    Article  CAS  Google Scholar 

  59. Raeder MB, Ferno J, Vik-Mo AO, Steen VM . SREBP activation by antipsychotic- and antidepressant-drugs in cultured human liver cells: relevance for metabolic side-effects? Mol Cell Biochem 2006; 289: 167–173.

    Article  CAS  Google Scholar 

  60. Vik-Mo AO, Birkenaes AB, Fernø J, Jonsdottir H, Andreassen OA, Steen VM . Increased expression of lipid biosynthesis genes in peripheral blood cells of olanzapine-treated patients. Int J Neuropsychopharmacol 2008; 11: 679–684.

    Article  CAS  Google Scholar 

  61. Arranz MJ, de Leon J . Pharmacogenetics and pharmacogenomics of schizophrenia: a review of last decade of research. Mol Psychiatry 2007; 12: 707–747.

    Article  CAS  Google Scholar 

  62. Le Hellard S, Theisen FM, Haberhausen M, Raeder MB, Fernø J, Gebhardt S et al. Association between the insulin-induced gene 2 (INSIG2) and weight gain in a German sample of antipsychotic-treated schizophrenic patients: perturbation of SREBP-controlled lipogenesis in drug-related metabolic adverse effects?. Mol Psychiatry 2008; e-pub ahead of print: doi:10.1038.

  63. Malhotra AK, Lencz T, Correll CU, Kane JM . Genomics and the future of pharmacotherapy in psychiatry. Int Rev Psychiatry 2007; 19: 523–530.

    Article  Google Scholar 

Download references

Acknowledgements

This study is based on an initial microarray-based gene expression analysis on antipsychotic drug action, using the infrastructure provided by the Norwegian Microarray Consortium FUGE technology platform (www.microarray.no), funded by the FUGE program of the Research Council of Norway. The study was supported by grants from the Research Council of Norway (incl. FUGE grant nos. 151904 and 183327, and Psykisk Helse grant no. 175345), Helse Vest RHF and Dr Einar Martens Fund. MMN, SC received support for their work from the Alfried Krupp von Bohlen und Halbach-Stiftung. CV was supported through a Marie Curie grant as part of the Research Training Netweork ‘EUTwins’ to MMN, SC, IN, HS (EU, FP6). The Norwegian TOP study was supported by Research Council of Norway (grants nos. 167153/V50 and 163070/V50) and the Eastern Norway Health Authority. We are indebted to the patients for their participation in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Le Hellard.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Hellard, S., Mühleisen, T., Djurovic, S. et al. Polymorphisms in SREBF1 and SREBF2, two antipsychotic-activated transcription factors controlling cellular lipogenesis, are associated with schizophrenia in German and Scandinavian samples. Mol Psychiatry 15, 463–472 (2010). https://doi.org/10.1038/mp.2008.110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2008.110

Keywords

This article is cited by

Search

Quick links