Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Activation of Wnt signaling by lithium and rosiglitazone reduced spatial memory impairment and neurodegeneration in brains of an APPswe/PSEN1ΔE9 mouse model of Alzheimer's disease

Abstract

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive deterioration of cognitive abilities, accumulation of the amyloid-β-peptide (Aβ) and synaptic alterations. Treatment with lithium has been shown to provide neuroprotection against several insults, including protection against Aβ neurotoxicity in vitro. Rosiglitazone, a peroxisome proliferator activated receptor-γ agonist, has been shown to attenuate Aβ-peptide neurotoxic effects, including the inflammatory response of microglia and astrocytes. Both types of drugs activate Wnt signaling, a pathway that has been shown to be related to AD. In this study, a double transgenic mouse model, which coexpresses APPswe and the exon 9 deletion of the presenilin 1 (PSEN1) gene, was used to examine, in vivo, the effect of lithium and rosiglitazone on Aβ neurotoxicity. Mice were tested for spatial memory, and their brain samples were used for histochemical and biochemical analysis. In this study, we report that both drugs significantly reduced (1) spatial memory impairment induced by amyloid burden; (2) Aβ aggregates and Aβ oligomers; and (3) astrocytic and microglia activation. They also prevented changes in presynaptic and postsynaptic marker proteins. Finally, both drugs activate Wnt signaling shown by the increase in β-catenin and by the inhibition of the glycogen synthase kinase-3β. We conclude that lithium and rosiglitazone, possibly by the activation of the Wnt signaling pathway, reduce various AD neuropathological markers and may be considered as potential therapeutic agents against the disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Salmon D, Bondi M . The Neuropsychology of Alzheimer's Disease. 2nd edn. Raven Press: New York, 1999.

    Google Scholar 

  2. Selkoe DJ . Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 2001; 81: 741–766.

    Article  CAS  PubMed  Google Scholar 

  3. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R et al. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991; 30: 572–580.

    Article  CAS  PubMed  Google Scholar 

  4. Selkoe DJ . Alzheimer's disease is a synaptic failure. Science 2002; 298: 789–791.

    Article  CAS  PubMed  Google Scholar 

  5. Inestrosa NC, Toledo EM . The role of Wnt signaling in neuronal dysfunction in Alzheimer's disease. Mol Neurodegener 2008; 3: 9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I et al. Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med 2008; 14: 837–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bijur GN, De Sarno P, Jope RS . Glycogen synthase kinase-3β facilitates staurosporine- and heat shock-induced apoptosis. Protection by lithium. J Biol Chem 2000; 275: 7583–7590.

    Article  CAS  PubMed  Google Scholar 

  8. Alvarez G, Munoz-Montano JR, Satrustegui J, Avila J, Bogonez E, Diaz-Nido J . Regulation of tau phosphorylation and protection against β-amyloid-induced neurodegeneration by lithium. Possible implications for Alzheimer's disease. Bipolar Disord 2002; 4: 153–165.

    Article  CAS  PubMed  Google Scholar 

  9. Klein PS, Melton DA . A molecular mechanism for the effect of lithium on development. PNAS 1996; 93: 8455–8459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Noble W, Planel E, Zehr C, Olm V, Meyerson J, Suleman F et al. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. PNAS 2005; 102: 6990–6995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rockenstein E, Torrance M, Adame A, Mante M, Bar-on P, Rose JB et al. Neuroprotective effects of regulators of the glycogen synthase kinase-3β signaling pathway in a transgenic model of Alzheimer's disease are associated with reduced amyloid precursor protein phosphorylation. J Neurosci 2007; 27: 1981–1991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. De Ferrari GV, Chacon MA, Barria MI, Garrido JL, Godoy JA, Olivares G et al. Activation of Wnt signaling rescues neurodegeneration and behavioral impairments induced by β-amyloid fibrils. Mol Psychiatry 2003; 8: 195–208.

    Article  CAS  PubMed  Google Scholar 

  13. Phiel CJ, Wilson CA, Lee VM, Klein PS . GSK-3α regulates production of Alzheimer's disease amyloid-β peptides. Nature 2003; 423: 435–439.

    Article  CAS  PubMed  Google Scholar 

  14. Su Y, Ryder J, Li B, Wu X, Fox N, Solenberg P et al. Lithium, a common drug for bipolar disorder treatment, regulates amyloid-β precursor protein processing. Biochemistry 2004; 43: 6899–6908.

    Article  CAS  PubMed  Google Scholar 

  15. Willson TM, Wahli W . Peroxisome proliferator-activated receptor agonists. Curr Opin Chem Biol 1997; 1: 235–241.

    Article  CAS  PubMed  Google Scholar 

  16. Camacho IE, Serneels L, Spittaels K, Merchiers P, Dominguez D, De Strooper B . Peroxisome proliferator-activated receptor γ induces a clearance mechanism for the amyloid-β peptide. J Neurosci 2004; 24: 10908–10917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Inestrosa NC, Godoy JA, Quintanilla RA, Koenig CS, Bronfman M . Peroxisome proliferator-activated receptor γ is expressed in hippocampal neurons and its activation prevents β-amyloid neurodegeneration: role of Wnt signaling. Exp Cell Res 2005; 304: 91–104.

    Article  CAS  PubMed  Google Scholar 

  18. Caruso A, Motolese M, Iacovelli L, Caraci F, Copani A, Nicoletti F et al. Inhibition of the canonical Wnt signaling pathway by apolipoprotein E4 in PC12 cells. J Neurochem 2006; 98: 364–371.

    Article  CAS  PubMed  Google Scholar 

  19. Risner ME, Saunders AM, Altman JF, Ormandy GC, Craft S, Foley IM et al. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer's disease. Pharmacogenomics J 2006; 6: 246–254.

    Article  CAS  PubMed  Google Scholar 

  20. Pedersen WA, Flynn ER . Insulin resistance contributes to aberrant stress responses in the Tg2576 mouse model of Alzheimer's disease. Neurobiol Dis 2004; 17: 500–506.

    Article  CAS  PubMed  Google Scholar 

  21. Brodbeck J, Balestra ME, Saunders AM, Roses AD, Mahley RW, Huang Y . Rosiglitazone increases dendritic spine density and rescues spine loss caused by apolipoprotein E4 in primary cortical neurons. PNAS 2008; 105: 1343–1346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA et al. Mutant presenilins specifically elevate the levels of the 42 residue β-amyloid peptide in vivo: evidence for augmentation of a 42-specific γ secretase. Hum Mol Genet 2004; 13: 159–170.

    Article  CAS  PubMed  Google Scholar 

  23. Chacon MA, Reyes AE, Inestrosa NC . Acetylcholinesterase induces neuronal cell loss, astrocyte hypertrophy and behavioral deficits in mammalian hippocampus. J Neurochem 2003; 87: 195–204.

    Article  CAS  PubMed  Google Scholar 

  24. Cancino GI, Toledo EM, Leal NR, Hernandez DE, Yevenes LF, Inestrosa NC et al. STI571 prevents apoptosis, tau phosphorylation and behavioural impairments induced by Alzheimer's β-amyloid deposits. Brain 2008; 131: 2425–2442.

    Article  PubMed  Google Scholar 

  25. Chen G, Chen KS, Knox J, Inglis J, Bernard A, Martin SJ et al. A learning deficit related to age and β-amyloid plaques in a mouse model of Alzheimer's disease. Nature 2000; 408: 975–979.

    Article  CAS  PubMed  Google Scholar 

  26. Reyes AE, Chacon MA, Dinamarca MC, Cerpa W, Morgan C, Inestrosa NC . Acetylcholinesterase-Aβ complexes are more toxic than Aβ fibrils in rat hippocampus: effect on rat β-amyloid aggregation, laminin expression, reactive astrocytosis, and neuronal cell loss. Am J Pathol 2004; 164: 2163–2174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chacon MA, Barria MI, Soto C, Inestrosa NC . β-Sheet breaker peptide prevents Aβ-induced spatial memory impairments with partial reduction of amyloid deposits. Mol Psychiatry 2004; 9: 953–961.

    Article  CAS  PubMed  Google Scholar 

  28. Schmidt ML, Schuck T, Sheridan S, Kung M-P, Kung H, Zhuang Z-P et al. The fluorescent congo red derivative, (Trans, Trans)-1-Bromo-2,5-Bis-(3-Hydroxycarbonyl-4-Hydroxy)Styrylbenzene (BSB), labels diverse β-pleated sheet structures in postmortem human neurodegenerative disease brains. Am J Pathol 2001; 159: 937–943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maezawa I, Hong HS, Liu R, Wu CY, Cheng RH, Kung MP et al. Congo red and thioflavin-T analogs detect Aβ oligomers. J Neurochem 2008; 104: 457–468.

    CAS  PubMed  Google Scholar 

  30. Yao WD, Gainetdinov RR, Arbuckle MI, Sotnikova TD, Cyr M, Beaulieu JM et al. Identification of PSD-95 as a regulator of dopamine-mediated synaptic and behavioral plasticity. Neuron 2004; 41: 625–638.

    Article  CAS  PubMed  Google Scholar 

  31. Alvarez AR, Godoy JA, Mullendorff K, Olivares GH, Bronfman M, Inestrosa NC . Wnt-3a overcomes β-amyloid toxicity in rat hippocampal neurons. Exp Cell Res 2004; 297: 186–196.

    Article  CAS  PubMed  Google Scholar 

  32. Varela-Nallar L, Toledo EM, Larrondo LF, Cabral ALB, Martins VR, Inestrosa NC . Induction of cellular prion protein gene expression by copper in neurons. Am J Physiol Cell Physiol 2006; 290: C271–C281.

    Article  CAS  PubMed  Google Scholar 

  33. Farias GG, Alfaro IE, Cerpa W, Grabowski CP, Godoy JA, Bonansco C et al. Wnt-5a/JNK signaling promotes the clustering of PSD-95 in hippocampal neurons. J Biol Chem 2009; 284: 15857–15866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McLaurin J, Kierstead ME, Brown ME, Hawkes CA, Lambermon MH, Phinney AL et al. Cyclohexanehexol inhibitors of Aβ aggregation prevent and reverse Alzheimer phenotype in a mouse model. Nat Med 2006; 12: 801–808.

    Article  CAS  PubMed  Google Scholar 

  35. Garcia-Alloza M, Robbins EM, Zhang-Nunes SX, Purcell SM, Betensky RA, Raju S et al. Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease. Neurobiol Dis 2006; 24: 516–524.

    Article  CAS  PubMed  Google Scholar 

  36. Marcus WL . Lithium: a review of its pharmacokinetics, health effects, and toxicology. J Environ Pathol Toxicol Oncol 1994; 13: 73–79.

    CAS  PubMed  Google Scholar 

  37. Schou M . Pharmacology and toxicology of lithium. Annu Rev Pharmacol Toxicol 1976; 16: 231–243.

    Article  CAS  PubMed  Google Scholar 

  38. Chang EH, Savage MJ, Flood DG, Thomas JM, Levy RB, Mahadomrongkul V et al. AMPA receptor downscaling at the onset of Alzheimer's disease pathology in double knockin mice. PNAS 2006; 103: 3410–3415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Morris RG . Episodic-like memory in animals: psychological criteria, neural mechanisms and the value of episodic-like tasks to investigate animal models of neurodegenerative disease. Philos Trans R Soc Lond B Biol Sci 2001; 356: 1453–1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Inestrosa NC, Varela-Nallar L, Grabowski CP, Colombres M . Synaptotoxicity in Alzheimer's disease: the Wnt signaling pathway as a molecular target. IUBMB Life 2007; 59: 316–321.

    Article  CAS  PubMed  Google Scholar 

  41. Lacor PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL et al. Synaptic targeting by Alzheimer's-related amyloid β oligomers. J Neurosci 2004; 24: 10191–10200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 2002; 416: 535–539.

    Article  CAS  PubMed  Google Scholar 

  43. Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M et al. Aβ oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer's disease. J Neurosci 2007; 27: 796–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron 2003; 39: 409–421.

    Article  CAS  PubMed  Google Scholar 

  45. Knafo S, Alonso-Nanclares L, Gonzalez-Soriano J, Merino-Serrais P, Fernaud-Espinosa I, Ferrer I et al. Widespread changes in dendritic spines in a model of Alzheimer's disease. Cereb Cortex 2009; 19: 586–592.

    Article  CAS  PubMed  Google Scholar 

  46. Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 2003; 300: 486–489.

    Article  CAS  PubMed  Google Scholar 

  47. Garrido JL, Godoy JA, Alvarez A, Bronfman M, Inestrosa NC . Protein kinase C inhibits amyloid β peptide neurotoxicity by acting on members of the Wnt pathway. FASEB J 2002; 16: 1982–1984.

    Article  CAS  PubMed  Google Scholar 

  48. Quintanilla RA, Munoz FJ, Metcalfe MJ, Hitschfeld M, Olivares G, Godoy JA et al. Trolox and 17β-estradiol protect against amyloid β-peptide neurotoxicity by a mechanism that involves modulation of the Wnt signaling pathway. J Biol Chem 2005; 280: 11615–11625.

    Article  CAS  PubMed  Google Scholar 

  49. Farias GG, Godoy JA, Hernandez F, Avila J, Fisher A, Inestrosa NC . M1 muscarinic receptor activation protects neurons from β-amyloid toxicity. A role for Wnt signaling pathway. Neurobiol Dis 2004; 17: 337–348.

    Article  CAS  PubMed  Google Scholar 

  50. Dinamarca MC, Colombres M, Cerpa W, Bonansco C, Inestrosa NC . β-Amyloid oligomers affect the structure and function of the postsynaptic region: role of the Wnt signaling pathway. Neurodegener Dis 2008; 5: 149–152.

    Article  CAS  PubMed  Google Scholar 

  51. Williams RS, Harwood AJ . Lithium therapy and signal transduction. Trends Pharmacol Sci 2000; 21: 61–64.

    Article  CAS  PubMed  Google Scholar 

  52. Wada A, Yokoo H, Yanagita T, Kobayashi H . Lithium: potential therapeutics against acute brain injuries and chronic neurodegenerative diseases. J Pharmacol Sci 2005; 99: 307–321.

    Article  CAS  PubMed  Google Scholar 

  53. Stambolic V, Ruel L, Woodgett JR . Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol 1996; 6: 1664–1668.

    Article  CAS  PubMed  Google Scholar 

  54. Gould TD, Manji HK . Glycogen synthase kinase-3: a putative molecular target for lithium mimetic drugs. Neuropsychopharmacology 2005; 30: 1223–1237.

    Article  CAS  PubMed  Google Scholar 

  55. Munoz-Montano JR, Moreno FJ, Avila J, Diaz-Nido J . Lithium inhibits Alzheimer's disease-like tau protein phosphorylation in neurons. FEBS Lett 1997; 411: 183–188.

    Article  CAS  PubMed  Google Scholar 

  56. Perez M, Hernandez F, Lim F, Diaz-Nido J, Avila J . Chronic lithium treatment decreases mutant tau protein aggregation in a transgenic mouse model. J Alzheimers Dis 2003; 5: 301–308.

    Article  CAS  PubMed  Google Scholar 

  57. Caccamo A, Oddo S, Tran LX, LaFerla FM . Lithium reduces tau phosphorylation but not Aβ or working memory deficits in a transgenic model with both plaques and tangles. Am J Pathol 2007; 170: 1669–1675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Landreth G . PPARγ agonists as new therapeutic agents for the treatment of Alzheimer's disease. Exp Neurol 2006; 199: 245–248.

    Article  CAS  PubMed  Google Scholar 

  59. Fuenzalida K, Quintanilla R, Ramos P, Piderit D, Fuentealba RA, Martinez G et al. Peroxisome proliferator-activated receptor γ up-regulates the Bcl-2 anti-apoptotic protein in neurons and induces mitochondrial stabilization and protection against oxidative stress and apoptosis. J Biol Chem 2007; 282: 37006–37015.

    Article  CAS  PubMed  Google Scholar 

  60. Heneka MT, Sastre M, Dumitrescu-Ozimek L, Hanke A, Dewachter I, Kuiperi C et al. Acute treatment with the PPARγ agonist pioglitazone and ibuprofen reduces glial inflammation and Aβ1–42 levels in APPV717I transgenic mice. Brain 2005; 128 (Pt 6): 1442–1453.

    Article  PubMed  Google Scholar 

  61. Lee JS, Ishimoto A, Yanagawa S . Characterization of mouse dishevelled (Dvl) proteins in Wnt/Wingless signaling pathway. J Biol Chem 1999; 274: 21464–21470.

    Article  CAS  PubMed  Google Scholar 

  62. Schulte G, Bryja V, Rawal N, Castelo-Branco G, Sousa KM, Arenas E . Purified Wnt-5a increases differentiation of midbrain dopaminergic cells and dishevelled phosphorylation. J Neurochem 2005; 92: 1550–1553.

    Article  CAS  PubMed  Google Scholar 

  63. Toledo EM, Colombres M, Inestrosa NC . Wnt signaling in neuroprotection and stem cell differentiation. Prog Neurobiol 2008; 86: 281–296.

    Article  CAS  PubMed  Google Scholar 

  64. Tanzi RE, Moir RD, Wagner SL . Clearance of Alzheimer's Aβ peptide: the many roads to perdition. Neuron 2004; 43: 605–608.

    CAS  PubMed  Google Scholar 

  65. Leissring MA . The AβCs of Aβ-cleaving proteases. J Biol Chem 2008; 283: 29645–29649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yin K-J, Cirrito JR, Yan P, Hu X, Xiao Q, Pan X et al. Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-β peptide catabolism. J Neurosci 2006; 26: 10939–10948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Simard AR, Soulet D, Gowing G, Julien J-P, Rivest S . Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron 2006; 49: 489–502.

    Article  CAS  PubMed  Google Scholar 

  68. Wu B, Crampton SP, Hughes CCW . Wnt signaling induces matrix metalloproteinase expression and regulates T cell transmigration. Immunity 2007; 26: 227–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Crawford HC, Fingleton BM, Rudolph-Owen LA, Goss KJ, Rubinfeld B, Polakis P et al. The metalloproteinase matrilysin is a target of β-catenin transactivation in intestinal tumors. Oncogene 1999; 18: 2883–2891.

    Article  CAS  PubMed  Google Scholar 

  70. Brabletz T, Jung A, Dag S, Hlubek F, Kirchner T . β-Catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol 1999; 155: 1033–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. White AR, Du T, Laughton KM, Volitakis I, Sharples RA, Xilinas ME et al. Degradation of the Alzheimer disease amyloid β-peptide by metal-dependent up-regulation of metalloprotease activity. J Biol Chem 2006; 281: 17670–17680.

    Article  CAS  PubMed  Google Scholar 

  72. Schechter R, Yen SH, Terry RD . Fibrous astrocytes in senile dementia of the Alzheimer type. J Neuropathol Exp Neurol 1981; 40: 95–101.

    Article  CAS  PubMed  Google Scholar 

  73. Kish SJ, Morito CL, Hornykiewicz O . Brain glutathione peroxidase in neurodegenerative disorders. Neurochem Pathol 1986; 4: 23–28.

    Article  CAS  PubMed  Google Scholar 

  74. Almeida CG, Tampellini D, Takahashi RH, Greengard P, Lin MT, Snyder EM et al. β-Amyloid accumulation in APP mutant neurons reduces PSD-95 and GluR1 in synapses. Neurobiol Dis 2005; 20: 187–198.

    Article  CAS  PubMed  Google Scholar 

  75. Roselli F, Tirard M, Lu J, Hutzler P, Lamberti P, Livrea P et al. Soluble β-amyloid1-40 induces NMDA-dependent degradation of postsynaptic density-95 at glutamatergic synapses. J Neurosci 2005; 25: 11061–11070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cerpa W, Godoy JA, Alfaro I, Farias GG, Metcalfe MJ, Fuentealba R et al. WNT-7a modulates the synaptic vesicle cycle and synaptic transmission in hippocampal neurons. J Biol Chem 2008; 283: 5918–5927.

    Article  CAS  PubMed  Google Scholar 

  77. He P, Shen Y . Interruption of β-catenin signaling reduces neurogenesis in Alzheimer's disease. J Neurosci 2009; 29: 6545–6557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from FONDAP (No. 13980001), the Millennium Institute for Fundamental and Basic Biology (MIFAB) and a grant from DIPUC to EMT. We thank Sebastian Belmar for his help with biochemical assays. This work is a partial account to fulfill the requirements of a PhD degree in Cell and Molecular Biology, presented by EMT at the Department of Cell and Molecular Biology, Faculty of Biological Sciences, PUC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N C Inestrosa.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toledo, E., Inestrosa, N. Activation of Wnt signaling by lithium and rosiglitazone reduced spatial memory impairment and neurodegeneration in brains of an APPswe/PSEN1ΔE9 mouse model of Alzheimer's disease. Mol Psychiatry 15, 272–285 (2010). https://doi.org/10.1038/mp.2009.72

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2009.72

Keywords

This article is cited by

Search

Quick links