Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Replication of linkage on chromosome 7q22 and association of the regional Reelin gene with working memory in schizophrenia families

Abstract

Schizophrenia is a common and complex mental disorder. Hereditary factors are important for its etiology, but despite linkage signals reported to several chromosomal regions in different populations, final identification of predisposing genes has remained a challenge. Utilizing a large family-based schizophrenia study sample from Finland, we have identified several linked loci: 1q32.2–q42, 2q, 4q31, 5q and 7q22. In this study, an independent sample of 352 nuclear schizophrenia families (n=1626) allowed replication of linkage on 7q21–32. In a sample of 245 nuclear families (n=1074) originating from the same geographical region as the families revealing the linkage, SNP and microsatellite association analyses of the four regional candidate genes, GRM3, RELN, SEMA3A and VGF, revealed no significant association to the clinical diagnosis of schizophrenia. Instead, quantifiable trait component analyses with neuropsychological endophenotypes available from 186 nuclear families (n=861) of the sample showed significant association to RELN variants for traits related to verbal (P=0.000003) and visual working memory (P=0.002), memory (P=0.002) and executive functioning (P=0.002). Trait-associated allele-positive subjects scored lower in the tests measuring working memory (P=0.0004–0.0000000004), memory (P=0.02–0.0001) and executive functioning (P=0.001). Our findings suggest that allelic variants of RELN contribute to the endophenotypes of schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Saha S, Chant D, Welham J, McGrath J . A systematic review of the prevalence of schizophrenia. PLoS Med 2005; 2: e141.

    PubMed  PubMed Central  Google Scholar 

  2. Aleman A, Kahn RS, Selten JP . Sex differences in the risk of schizophrenia: evidence from meta-analysis. Arch Gen Psychiatry 2003; 60: 565–571.

    PubMed  Google Scholar 

  3. Tienari P, Wynne LC, Sorri A, Lahti I, Laksy K, Moring J et al. Genotype-environment interaction in schizophrenia-spectrum disorder. Long-term follow-up study of Finnish adoptees. Br J Psychiatry 2004; 184: 216–222.

    Article  PubMed  Google Scholar 

  4. Cardno AG, Gottesman II . Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. Am J Med Genet 2000; 97: 12–17.

    Article  CAS  PubMed  Google Scholar 

  5. Owen MJ, Williams NM, O’Donovan MC . The molecular genetics of schizophrenia: new findings promise new insights. Mol Psychiatry 2004; 9: 14–27.

    Article  CAS  PubMed  Google Scholar 

  6. Harrison PJ, Weinberger DR . Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 2005; 10: 40–68; image 5.

    Article  CAS  PubMed  Google Scholar 

  7. Rapoport JL, Addington AM, Frangou S, Psych MR . The neurodevelopmental model of schizophrenia: update 2005. Mol Psychiatry 2005; 10: 434–449.

    Article  CAS  PubMed  Google Scholar 

  8. Owen MJ, Craddock N, O’Donovan MC . Schizophrenia: genes at last? Trends Genet 2005; 21: 518–525.

    Article  CAS  PubMed  Google Scholar 

  9. Riley B, Kendler KS . Molecular genetic studies of schizophrenia. Eur J Hum Genet 2006; 14: 669–680.

    Article  CAS  PubMed  Google Scholar 

  10. Peltonen L, Jalanko A, Varilo T . Molecular genetics of the Finnish disease heritage. Hum Mol Genet 1999; 8: 1913–1923.

    Article  CAS  PubMed  Google Scholar 

  11. Norio R, Nevanlinna HR, Perheentupa J . Hereditary diseases in Finland; rare flora in rare soul. Ann Clin Res 1973; 5: 109–141.

    CAS  PubMed  Google Scholar 

  12. Peltonen L, Palotie A, Lange K . Use of population isolates for mapping complex traits. Nat Rev Genet 2000; 1: 182–190.

    Article  CAS  PubMed  Google Scholar 

  13. Varilo T, Peltonen L . Isolates and their potential use in complex gene mapping efforts. Curr Opin Genet Dev 2004; 14: 316–323.

    Article  CAS  PubMed  Google Scholar 

  14. Perala J, Suvisaari J, Saarni SI, Kuoppasalmi K, Isometsa E, Pirkola S et al. Lifetime prevalence of psychotic and bipolar I disorders in a general population. Arch Gen Psychiatry 2007; 64: 19–28.

    Article  PubMed  Google Scholar 

  15. Hovatta I, Terwilliger JD, Lichtermann D, Makikyro T, Suvisaari J, Peltonen L et al. Schizophrenia in the genetic isolate of Finland. Am J Med Genet 1997; 74: 353–360.

    Article  CAS  PubMed  Google Scholar 

  16. Service S, Deyoung J, Karayiorgou M, Roos JL, Pretorious H, Bedoya G et al. Magnitude and distribution of linkage disequilibrium in population isolates and implications for genome-wide association studies. Nat Genet 2006; 38: 556–560.

    Article  CAS  PubMed  Google Scholar 

  17. Tuulio-Henriksson A, Haukka J, Partonen T, Varilo T, Paunio T, Ekelund J et al. Heritability and number of quantitative trait loci of neurocognitive functions in families with schizophrenia. Am J Med Genet 2002; 114: 483–490.

    Article  PubMed  Google Scholar 

  18. Tuulio-Henriksson A, Partonen T, Suvisaari J, Haukka J, Lonnqvist J . Age at onset and cognitive functioning in schizophrenia. Br J Psychiatry 2004; 185: 215–219.

    Article  PubMed  Google Scholar 

  19. Paunio T, Tuulio-Henriksson A, Hiekkalinna T, Perola M, Varilo T, Partonen T et al. Search for cognitive trait components of schizophrenia reveals a locus for verbal learning and memory on 4q and for visual working memory on 2q. Hum Mol Genet 2004; 13: 1693–1702.

    Article  CAS  PubMed  Google Scholar 

  20. Arajarvi R, Haukka J, Varilo T, Suokas J, Juvonen H, Suvisaari J et al. Clinical phenotype of schizophrenia in a Finnish isolate. Schizophr Res 2004; 67: 195–205.

    Article  PubMed  Google Scholar 

  21. Kuha A, Tuulio-Henriksson A, Eerola M, Perala J, Suvisaari J, Partonen T et al. Impaired executive performance in healthy siblings of schizophrenia patients in a population-based study. Schizophr Res 2007; 92: 142–150.

    Article  PubMed  Google Scholar 

  22. Hovatta I, Varilo T, Suvisaari J, Terwilliger JD, Ollikainen V, Arajarvi R et al. A genomewide screen for schizophrenia genes in an isolated Finnish subpopulation, suggesting multiple susceptibility loci. Am J Hum Genet 1999; 65: 1114–1124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ekelund J, Lichtermann D, Hovatta I, Ellonen P, Suvisaari J, Terwilliger JD et al. Genome-wide scan for schizophrenia in the Finnish population: evidence for a locus on chromosome 7q22. Hum Mol Genet 2000; 9: 1049–1057.

    Article  CAS  PubMed  Google Scholar 

  24. Ekelund J, Hovatta I, Parker A, Paunio T, Varilo T, Martin R et al. Chromosome 1 loci in Finnish schizophrenia families. Hum Mol Genet 2001; 10: 1611–1617.

    Article  CAS  PubMed  Google Scholar 

  25. Paunio T, Ekelund J, Varilo T, Parker A, Hovatta I, Turunen JA et al. Genome-wide scan in a nationwide study sample of schizophrenia families in Finland reveals susceptibility loci on chromosomes 2q and 5q. Hum Mol Genet 2001; 10: 3037–3048.

    Article  CAS  PubMed  Google Scholar 

  26. Hennah W, Varilo T, Kestila M, Paunio T, Arajarvi R, Haukka J et al. Haplotype transmission analysis provides evidence of association for DISC1 to schizophrenia and suggests sex-dependent effects. Hum Mol Genet 2003; 12: 3151–3159.

    Article  CAS  PubMed  Google Scholar 

  27. Gottesman II, Gould TD . The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 2003; 160: 636–645.

    Article  PubMed  Google Scholar 

  28. Blin N, Stafford DW . A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res 1976; 3: 2303–2308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th edn. American Psychiatric Association: Washington, DC, 1994.

  30. McGuffin P, Farmer A, Harvey I . A polydiagnostic application of operational criteria in studies of psychotic illness. Development and reliability of the OPCRIT system. Arch Gen Psychiatry 1991; 48: 764–770.

    Article  CAS  PubMed  Google Scholar 

  31. First MB, Spitzer RL, Gibbon M, Williams JBW . Structured Clinical Interview for DSM-IV Axis I Disorders—Clinician Version (SCID-CV). American Psychiatric Press Inc.: Washington, DC, 1997.

    Google Scholar 

  32. Wechsler D . Wechsler Memory Scale—Revised (WMS-R), Manual. Psychological Corporation, Harcourt Brace Jovanovich Inc.: San Antonio, 1987.

    Google Scholar 

  33. Delis DC, Kramer JH, Kaplan E, Ober BA . California Verbal Learning Test: Manual, Research Edition. Psychological Corporation, Harcourt Brace & Company: San Antonio, 1987.

    Google Scholar 

  34. Golden C . Stroop Color and Word Test: Manual for Clinical and Experimental Uses. Stoelting: Chicago, 1978.

    Google Scholar 

  35. Wechsler D . Wechsler Adult Intelligence Scale—Revised (WAIS-R), Manual. Psychological Corporation, Harcourt Brace Jovanovich Inc.: Cleveland, 1981.

    Google Scholar 

  36. Varilo T, Laan M, Hovatta I, Wiebe V, Terwilliger JD, Peltonen L . Linkage disequilibrium in isolated populations: Finland and a young sub-population of Kuusamo. Eur J Hum Genet 2000; 8: 604–612.

    Article  CAS  PubMed  Google Scholar 

  37. Varilo T, Paunio T, Parker A, Perola M, Meyer J, Terwilliger JD et al. The interval of linkage disequilibrium (LD) detected with microsatellite and SNP markers in chromosomes of Finnish populations with different histories. Hum Mol Genet 2003; 12: 51–59.

    Article  CAS  PubMed  Google Scholar 

  38. Gottesman II, Shields J, Hanson DR . Schizophrenia, the Epigenetic Puzzle. Cambridge University Press: New York, 1982.

    Google Scholar 

  39. Kendler KS, McGuire M, Gruenberg AM, O’Hare A, Spellman M, Walsh D . The Roscommon Family Study. I. Methods, diagnosis of probands, and risk of schizophrenia in relatives. Arch Gen Psychiatry 1993; 50: 527–540.

    Article  CAS  PubMed  Google Scholar 

  40. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM et al. The human genome browser at UCSC. Genome Res 2002; 12: 996–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Riva A, Kohane IS . A SNP-centric database for the investigation of the human genome. BMC Bioinform 2004; 5: 33.

    Article  Google Scholar 

  42. O’Connell JR, Weeks DE . PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 1998; 63: 259–266.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wigginton JE, Abecasis GR . PEDSTATS: descriptive statistics, graphics and quality assessment for gene mapping data. Bioinformatics 2005; 21: 3445–3447.

    Article  CAS  PubMed  Google Scholar 

  44. Abecasis GR, Cherny SS, Cookson WO, Cardon LR . Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 2002; 30: 97–101.

    Article  CAS  PubMed  Google Scholar 

  45. Excoffier L, Slatkin M . Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol 1995; 12: 921–927.

    CAS  PubMed  Google Scholar 

  46. Abecasis GR, Cookson WO . GOLD—graphical overview of linkage disequilibrium. Bioinformatics 2000; 16: 182–183.

    Article  CAS  PubMed  Google Scholar 

  47. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  PubMed  Google Scholar 

  48. Goring HH, Terwilliger JD . Linkage analysis in the presence of errors IV: joint pseudomarker analysis of linkage and/or linkage disequilibrium on a mixture of pedigrees and singletons when the mode of inheritance cannot be accurately specified. Am J Hum Genet 2000; 66: 1310–1327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sobel E, Lange K . Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics. Am J Hum Genet 1996; 58: 1323–1337.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sobel E, Sengul H, Weeks DE . Multipoint estimation of identity-by-descent probabilities at arbitrary positions among marker loci on general pedigrees. Hum Hered 2001; 52: 121–131.

    Article  CAS  PubMed  Google Scholar 

  51. Sobel E, Papp JC, Lange K . Detection and integration of genotyping errors in statistical genetics. Am J Hum Genet 2002; 70: 496–508.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mukhopadhyay N, Almasy L, Schroeder M, Mulvihill WP, Weeks DE . Mega2: data-handling for facilitating genetic linkage and association analyses. Bioinformatics 2005; 21: 2556–2557.

    Article  CAS  PubMed  Google Scholar 

  53. Hiekkalinna T, Terwilliger JD, Sammalisto S, Peltonen L, Perola M . AUTOGSCAN: powerful tools for automated genome-wide linkage and linkage disequilibrium analysis. Twin Res Hum Genet 2005; 8: 16–21.

    Article  PubMed  Google Scholar 

  54. Clayton D . A generalization of the transmission/disequilibrium test for uncertain-haplotype transmission. Am J Hum Genet 1999; 65: 1170–1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Abecasis GR, Cardon LR, Cookson WO . A general test of association for quantitative traits in nuclear families. Am J Hum Genet 2000; 66: 279–292.

    Article  CAS  PubMed  Google Scholar 

  56. Elvevag B, Goldberg TE . Cognitive impairment in schizophrenia is the core of the disorder. Crit Rev Neurobiol 2000; 14: 1–21.

    Article  CAS  PubMed  Google Scholar 

  57. Keshavan MS, Rabinowitz J, DeSmedt G, Harvey PD, Schooler N . Correlates of insight in first episode psychosis. Schizophr Res 2004; 70: 187–194.

    Article  PubMed  Google Scholar 

  58. Zeger SL, Liang KY . Longitudinal data analysis for discrete and continuous outcomes. Biometrics 1986; 42: 121–130.

    Article  CAS  PubMed  Google Scholar 

  59. Carey VJ, Lumley T, Ripley BD . Gee: Generalized Estimation Equation Solver, R package version 4.13–10 2002.

  60. R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2006.

  61. The International HapMap Consortium. The International HapMap Project. Nature 2003; 426: 789–796.

    Article  CAS  Google Scholar 

  62. Heaton RK, Gladsjo JA, Palmer BW, Kuck J, Marcotte TD, Jeste DV . Stability and course of neuropsychological deficits in schizophrenia. Arch Gen Psychiatry 2001; 58: 24–32.

    Article  CAS  PubMed  Google Scholar 

  63. Cannon TD . The inheritance of intermediate phenotypes for schizophrenia. Curr Opin Psychiatry 2005; 18: 135–140.

    Article  PubMed  Google Scholar 

  64. Gur RE, Calkins ME, Gur RC, Horan WP, Nuechterlein KH, Seidman LJ et al. The Consortium on the Genetics of Schizophrenia: neurocognitive endophenotypes. Schizophr Bull 2007; 33: 49–68.

    Article  PubMed  Google Scholar 

  65. Coyle JT . The glutamatergic dysfunction hypothesis for schizophrenia. Harv Rev Psychiatry 1996; 3: 241–253.

    Article  CAS  PubMed  Google Scholar 

  66. Collier DA, Li T . The genetics of schizophrenia: glutamate not dopamine? Eur J Pharmacol 2003; 480: 177–184.

    Article  CAS  PubMed  Google Scholar 

  67. Fujii Y, Shibata H, Kikuta R, Makino C, Tani A, Hirata N et al. Positive associations of polymorphisms in the metabotropic glutamate receptor type 3 gene (GRM3) with schizophrenia. Psychiatr Genet 2003; 13: 71–76.

    PubMed  Google Scholar 

  68. Egan MF, Straub RE, Goldberg TE, Yakub I, Callicott JH, Hariri AR et al. Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. Proc Natl Acad Sci USA 2004; 101: 12604–12609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen Q, He G, Chen Q, Wu S, Xu Y, Feng G et al. A case-control study of the relationship between the metabotropic glutamate receptor 3 gene and schizophrenia in the Chinese population. Schizophr Res 2005; 73: 21–26.

    Article  PubMed  Google Scholar 

  70. Fatemi SH . Reelin glycoprotein: structure, biology and roles in health and disease. Mol Psychiatry 2005; 10: 251–257.

    Article  CAS  PubMed  Google Scholar 

  71. Rice DS, Curran T . Role of the reelin signaling pathway in central nervous system development. Annu Rev Neurosci 2001; 24: 1005–1039.

    Article  CAS  PubMed  Google Scholar 

  72. Fatemi SH . Reelin mutations in mouse and man: from reeler mouse to schizophrenia, mood disorders, autism and lissencephaly. Mol Psychiatry 2001; 6: 129–133.

    Article  CAS  PubMed  Google Scholar 

  73. Abdolmaleky HM, Cheng KH, Russo A, Smith CL, Faraone SV, Wilcox M et al. Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: a preliminary report. Am J Med Genet B Neuropsychiatr Genet 2005; 134: 60–66.

    Article  Google Scholar 

  74. Grayson DR, Jia X, Chen Y, Sharma RP, Mitchell CP, Guidotti A et al. Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci USA 2005; 102: 9341–9346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Impagnatiello F, Guidotti AR, Pesold C, Dwivedi Y, Caruncho H, Pisu MG et al. A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci USA 1998; 95: 15718–15723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Guidotti A, Auta J, Davis JM, Di-Giorgi-Gerevini V, Dwivedi Y, Grayson DR et al. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry 2000; 57: 1061–1069.

    Article  CAS  PubMed  Google Scholar 

  77. Eastwood SL, Harrison PJ . Interstitial white matter neurons express less reelin and are abnormally distributed in schizophrenia: towards an integration of molecular and morphologic aspects of the neurodevelopmental hypothesis. Mol Psychiatry 2003; 8: 769, 821–831.

    Article  CAS  PubMed  Google Scholar 

  78. He Z, Wang KC, Koprivica V, Ming G, Song HJ . Knowing how to navigate: mechanisms of semaphorin signaling in the nervous system. Sci STKE 2002; 2002: RE1.

    PubMed  Google Scholar 

  79. Eastwood SL, Law AJ, Everall IP, Harrison PJ . The axonal chemorepellant semaphorin 3A is increased in the cerebellum in schizophrenia and may contribute to its synaptic pathology. Mol Psychiatry 2003; 8: 148–155.

    Article  CAS  PubMed  Google Scholar 

  80. Trani E, Ciotti T, Rinaldi AM, Canu N, Ferri GL, Levi A et al. Tissue-specific processing of the neuroendocrine protein VGF. J Neurochem 1995; 65: 2441–2449.

    Article  CAS  PubMed  Google Scholar 

  81. Salton SR, Ferri GL, Hahm S, Snyder SE, Wilson AJ, Possenti R et al. VGF: a novel role for this neuronal and neuroendocrine polypeptide in the regulation of energy balance. Front Neuroendocrinol 2000; 21: 199–219.

    Article  CAS  PubMed  Google Scholar 

  82. Salton SR, Fischberg DJ, Dong KW . Structure of the gene encoding VGF, a nervous system-specific mRNA that is rapidly and selectively induced by nerve growth factor in PC12 cells. Mol Cell Biol 1991; 11: 2335–2349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lombardo A, Rabacchi SA, Cremisi F, Pizzorusso T, Cenni MC, Possenti R et al. A developmentally regulated nerve growth factor-induced gene, VGF, is expressed in geniculocortical afferents during synaptogenesis. Neuroscience 1995; 65: 997–1008.

    Article  CAS  PubMed  Google Scholar 

  84. Marti SB, Cichon S, Propping P, Nothen M . Metabotropic glutamate receptor 3 (GRM3) gene variation is not associated with schizophrenia or bipolar affective disorder in the German population. Am J Med Genet 2002; 114: 46–50.

    Article  PubMed  Google Scholar 

  85. Norton N, Williams HJ, Dwyer S, Ivanov D, Preece AC, Gerrish A et al. No evidence for association between polymorphisms in GRM3 and schizophrenia. BMC Psychiatry 2005; 5: 23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Braff DL, Freedman R, Schork NJ, Gottesman II . Deconstructing schizophrenia: an overview of the use of endophenotypes in order to understand a complex disorder. Schizophr Bull 2007; 33: 21–32.

    Article  PubMed  Google Scholar 

  87. Cooper JA, Howell BW . Lipoprotein receptors: signaling functions in the brain? Cell 1999; 97: 671–674.

    Article  CAS  PubMed  Google Scholar 

  88. Rice DS, Curran T . Mutant mice with scrambled brains: understanding the signaling pathways that control cell positioning in the CNS. Genes Dev 1999; 13: 2758–2773.

    Article  CAS  PubMed  Google Scholar 

  89. Costa E, Chen Y, Davis J, Dong E, Noh JS, Tremolizzo L et al. REELIN and schizophrenia: a disease at the interface of the genome and the epigenome. Mol Interv 2002; 2: 47–57.

    Article  CAS  PubMed  Google Scholar 

  90. Deutsch SI, Rosse RB, Lakshman RM . Dysregulation of tau phosphorylation is a hypothesized point of convergence in the pathogenesis of Alzheimer's disease, frontotemporal dementia and schizophrenia with therapeutic implications. Prog Neuropsychopharmacol Biol Psychiatry 2006; 38: 1369–1380.

    Article  CAS  Google Scholar 

  91. Tueting P, Doueiri MS, Guidotti A, Davis JM, Costa E . Reelin down-regulation in mice and psychosis endophenotypes. Neurosci Biobehav Rev 2006; 30: 1065–1077.

    Article  CAS  PubMed  Google Scholar 

  92. Garlick D . Understanding the nature of the general factor of intelligence: the role of individual differences in neural plasticity as an explanatory mechanism. Psychol Rev 2002; 109: 116–136.

    Article  PubMed  Google Scholar 

  93. Qiu S, Korwek KM, Pratt-Davis AR, Peters M, Bergman MY, Weeber EJ . Cognitive disruption and altered hippocampus synaptic function in Reelin haploinsufficient mice. Neurobiol Learn Mem 2006; 85: 228–242.

    Article  CAS  PubMed  Google Scholar 

  94. Gottesman II, Erlenmeyer-Kimling L . Family and twin strategies as a head start in defining prodromes and endophenotypes for hypothetical early-interventions in schizophrenia. Schizophr Res 2001; 51: 93–102.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the contributions of Drs Joseph D Terwilliger, Jari Haukka, Markus Perola and Mr Tero Hiekkalinna for practical help and critical comments on the statistical analyses of this study, and Ms Minna Suvela, Ms Sisko Lietola, Mr Pekka Ellonen and Ms Minttu Jussila for laboratory work. We warmly thank all the participating patients and their families, whose supportive attitude towards our research is highly appreciated, as well as all the field workers who participated in the sample collection and the diagnostic assessment. This study was supported by the Academy of Finland (Center of Excellence in Complex Disease Genetics), and Biocentrum Helsinki. Juho Wedenoja was funded by the Helsinki Biomedical Graduate School. Anu Loukola is a post-doctoral fellow of the Academy of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Peltonen.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wedenoja, J., Loukola, A., Tuulio-Henriksson, A. et al. Replication of linkage on chromosome 7q22 and association of the regional Reelin gene with working memory in schizophrenia families. Mol Psychiatry 13, 673–684 (2008). https://doi.org/10.1038/sj.mp.4002047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4002047

Keywords

This article is cited by

Search

Quick links