Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

Genetics of behavioural domains across the neuropsychiatric spectrum; of mice and men

Abstract

Family and twin studies have revealed that genetic factors play a major role in psychiatric disorders, however, attempts to find susceptibility genes for these complex disorders have been largely unsuccessful. Therefore, new research strategies are required to tackle the complex interactions of genes, developmental, and environmental events. Here, we will address a behavioural domain concept that focuses on the genetics of behavioural domains relevant to both animal behaviour and across human psychiatric disorders. We believe that interspecies trait genetics rather than complex syndrome genetics will optimize genotype–phenotype relationships for psychiatric disorders and facilitate the identification of biological substrates underlying these disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Chen J, Lipska BK, Weinberger DR . Genetic mouse models of schizophrenia: from hypothesis-based to susceptibility gene-based models. Biol Psychiatry 2006; 59: 1180–1188.

    Article  CAS  Google Scholar 

  2. Weiser M, van Os J, Davidson M . Time for a shift in focus in schizophrenia: from narrow phenotypes to broad endophenotypes. Br J Psychiatry 2005; 187: 203–205.

    Article  Google Scholar 

  3. Strober M, Freeman R, Lampert C, Diamond J, Kaye W . Controlled family study of anorexia nervosa and bulimia nervosa: evidence of shared liability and transmission of partial syndromes. Am J Psychiatry 2000; 157: 393–401.

    Article  CAS  Google Scholar 

  4. Fairburn CG, Harrison PJ . Eating disorders. Lancet 2003; 361: 407–416.

    Article  Google Scholar 

  5. Badner JA, Gershon ES . Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry 2002; 7: 405–411.

    Article  CAS  Google Scholar 

  6. Hamshere ML, Bennett P, Williams N, Segurado R, Cardno A, Norton N et al. Genomewide linkage scan in schizoaffective disorder: significant evidence for linkage at 1q42 close to DISC1, and suggestive evidence at 22q11 and 19p13. Arch Gen Psychiatry 2005; 62: 1081–1088.

    Article  CAS  Google Scholar 

  7. Hodgkinson CA, Goldman D, Jaeger J, Persaud S, Kane JM, Lipsky RH et al. Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am J Hum Genet 2004; 75: 862–872.

    Article  CAS  Google Scholar 

  8. Green EK, Raybould R, Macgregor S, Gordon-Smith K, Heron J, Hyde S et al. Operation of the schizophrenia susceptibility gene, neuregulin 1, across traditional diagnostic boundaries to increase risk for bipolar disorder. Arch Gen Psychiatry 2005; 62: 642–648.

    Article  CAS  Google Scholar 

  9. Breen G, Prata D, Osborne S, Munro J, Sinclair M, Li T et al. Association of the dysbindin gene with bipolar affective disorder. Am J Psychiatry 2006; 163: 1636–1638.

    Article  Google Scholar 

  10. Detera-Wadleigh SD, McMahon FJ . G72/G30 in schizophrenia and bipolar disorder: review and meta-analysis. Biol Psychiatry 2006; 60: 106–114.

    Article  CAS  Google Scholar 

  11. Schumacher J, Jamra RA, Becker T, Ohlraun S, Klopp N, Binder EB et al. Evidence for a relationship between genetic variants at the brain-derived neurotrophic factor (BDNF) locus and major depression. Biol Psychiatry 2005; 58: 307–314.

    Article  CAS  Google Scholar 

  12. Ribases M, Gratacos M, Fernandez-Aranda F, Bellodi L, Boni C, Anderluh M et al. Association of BDNF with restricting anorexia nervosa and minimum body mass index: a family-based association study of eight European populations. Eur J Hum Genet 2005; 13: 428–434.

    Article  CAS  Google Scholar 

  13. Okada T, Hashimoto R, Numakawa T, Iijima Y, Kosuga A, Tatsumi M et al. A complex polymorphic region in the brain-derived neurotrophic factor (BDNF) gene confers susceptibility to bipolar disorder and affects transcriptional activity. Mol Psychiatry 2006; 11: 695–703.

    Article  CAS  Google Scholar 

  14. Neves-Pereira M, Mundo E, Muglia P, King N, Macciardi F, Kennedy JL . The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: evidence from a family-based association study. Am J Hum Genet 2002; 71: 651–655.

    Article  CAS  Google Scholar 

  15. Koizumi H, Hashimoto K, Itoh K, Nakazato M, Shimizu E, Ohgake S et al. Association between the brain-derived neurotrophic factor 196G/A polymorphism and eating disorders. Am J Med Genet B Neuropsychiatr Genet 2004; 127: 125–127.

    Article  Google Scholar 

  16. Serretti A, Olgiati P . Dimensions of major psychoses: a confirmatory factor analysis of six competing models. Psychol Res 2004; 127: 101–109.

    Google Scholar 

  17. Gottesman II, Gould TD . The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 2003; 160: 636–645.

    Article  Google Scholar 

  18. Wang X, Paigen B . Genome-wide search for new genes controlling plasma lipid concentrations in mice and humans. Curr Opin Lipidol 2005; 16: 127–137.

    Article  CAS  Google Scholar 

  19. Aitman TJ, Dong R, Vyse TJ, Norsworthy PJ, Johnson MD, Smith J et al. Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature 2006; 439: 851–855.

    Article  CAS  Google Scholar 

  20. Cases O, Seif I, Grimsby J, Gaspar P, Chen K, Pournin S et al. Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 1995; 268: 1763–1766.

    Article  CAS  Google Scholar 

  21. Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA . Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 1993; 262: 578–580.

    Article  CAS  Google Scholar 

  22. Bell CG, Walley AJ, Froguel P . The genetics of human obesity. Nat Rev Genet 2005; 6: 221–234.

    Article  CAS  Google Scholar 

  23. Brigman JL, Bussey TJ, Saksida LM, Rothblat LA . Discrimination of multidimensional visual stimuli by mice: intra- and extradimensional shifts. Behav Neurosci 2005; 119: 839–842.

    Article  Google Scholar 

  24. McIlwain KL, Merriweather MY, Yuva-Paylor LA, Paylor R . The use of behavioral test batteries: effects of training history. Physiol Behav 2001; 73: 705–717.

    Article  CAS  Google Scholar 

  25. Chesler EJ, Wilson SG, Lariviere WR, Rodriguez-Zas SL, Mogil JS . Influences of laboratory environment on behavior. Nat Neurosci 2002; 5: 1101–1102.

    Article  CAS  Google Scholar 

  26. Lewis MH . Environmental complexity and central nervous system development and function. Ment Retard Dev Disabil Res Rev 2004; 10: 91–95.

    Article  Google Scholar 

  27. Kas MJ, Van Ree JM . Dissecting complex behaviours in the post-genomic era. Trends Neurosci 2004; 27: 366–369.

    Article  CAS  Google Scholar 

  28. Cone RD . The Central Melanocortin System and Energy Homeostasis. Trends Endocrinol Metab 1999; 10: 211–216.

    Article  CAS  Google Scholar 

  29. Kandel ER . Genes, synapses, and long-term memory. J Cell Physiol 1997; 173: 124–125.

    Article  CAS  Google Scholar 

  30. Birrell JM, Brown VJ . Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci 2000; 20: 4320–4324.

    Article  CAS  Google Scholar 

  31. von Frijtag JC, Van den Bos R, Spruijt BM . Imipramine restores the long-term impairment of appetitive behavior in socially stressed rats. Psychopharmacology (Berlin) 2002; 162: 232–238.

    Article  CAS  Google Scholar 

  32. Menalled LB . Knock-in mouse models of Huntington's disease. NeuroRx 2005; 2: 465–470.

    Article  Google Scholar 

  33. Grupe A, Germer S, Usuka J, Aud D, Belknap JK, Klein RF et al. In silico mapping of complex disease-related traits in mice. Science 2001; 292: 1915–1918.

    Article  CAS  Google Scholar 

  34. Peirce JL, Lu L, Gu J, Silver LM, Williams RW . A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 2004; 5: 7.

    Article  Google Scholar 

  35. Silver LM . Mouse Genetics. Concepts and Applications. Oxford University Press: New York, 1995.

    Google Scholar 

  36. Plomin R, McClearn GE, Gora-Maslak G, Neiderhiser JM . Use of recombinant inbred strains to detect quantitative trait loci associated with behavior. Behav Genet 1991; 21: 99–116.

    Article  CAS  Google Scholar 

  37. Jansen RC, Nap JP . Genetical genomics: the added value from segregation. Trends Genet 2001; 17: 388–391.

    Article  CAS  Google Scholar 

  38. Klose RJ, Bird AP . Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 2006; 31: 89–97.

    Article  CAS  Google Scholar 

  39. Drake TA, Schadt EE, Lusis AJ . Integrating genetic and gene expression data: application to cardiovascular and metabolic traits in mice. Mamm Genome 2006; 17: 466–479.

    Article  CAS  Google Scholar 

  40. Singer JB, Hill AE, Burrage LC, Olszens KR, Song J, Justice M et al. Genetic dissection of complex traits with chromosome substitution strains of mice. Science 2004; 304: 445–448.

    Article  CAS  Google Scholar 

  41. Bevova MR, Aulchenko YS, Aksu S, Renne U, Brockmann GA . Chromosome-wise dissection of the genome of the extremely big mouse line DU6i. Genetics 2006; 172: 401–410.

    Article  CAS  Google Scholar 

  42. Gregorova S, Forejt J . PWD/Ph and PWK/Ph inbred mouse strains of Mus m. musculus subspecies – a valuable resource of phenotypic variations and genomic polymorphisms. Folia Biol (Praha) 2000; 46: 31–41.

    CAS  Google Scholar 

  43. Churchill GA, Airey DC, Allayee H, Angel JM, Attie AD, Beatty J et al. The collaborative cross, a community resource for the genetic analysis of complex traits. Nat Genet 2004; 36: 1133–1137.

    Article  CAS  Google Scholar 

  44. Lau JY, Eley TC . Gene–environment interactions and correlations in psychiatric disorders. Curr Psychiatry Rep 2004; 6: 119–124.

    Article  Google Scholar 

  45. Rutter M, Silberg J . Gene–environment interplay in relation to emotional and behavioral disturbance. Annu Rev Psychol 2002; 53: 463–490.

    Article  Google Scholar 

  46. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 2003; 301: 386–389.

    Article  CAS  Google Scholar 

  47. Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW et al. Role of genotype in the cycle of violence in maltreated children. Science 2002; 297: 851–854.

    Article  CAS  Google Scholar 

  48. Caspi A, Moffitt TE . Gene–environment interactions in psychiatry: joining forces with neuroscience. Nat Rev Neurosci 2006; 7: 583–590.

    Article  CAS  Google Scholar 

  49. Heath AC, Todorov AA, Nelson EC, Madden PA, Bucholz KK, Martin NG . Gene–environment interaction effects on behavioral variation and risk of complex disorders: the example of alcoholism and other psychiatric disorders. Twin Res 2002; 5: 30–37.

    Article  Google Scholar 

  50. Wahlsten D, Rustay NR, Metten P, Crabbe JC . In search of a better mouse test. Trends Neurosci 2003; 26: 132–136.

    Article  CAS  Google Scholar 

  51. Bakshi VP, Kalin NH . Corticotropin-releasing hormone and animal models of anxiety: gene–environment interactions. Biol Psychiatry 2000; 48: 1175–1198.

    Article  CAS  Google Scholar 

  52. Murphy DL, Li Q, Engel S, Wichems C, Andrews A, Lesch KP et al. Genetic perspectives on the serotonin transporter. Brain Res Bull 2001; 56: 487–494.

    Article  CAS  Google Scholar 

  53. Barr CS, Newman TK, Becker ML, Parker CC, Champoux M, Lesch KP et al. The utility of the non-human primate; model for studying gene by environment interactions in behavioral research. Genes Brain Behav 2003; 2: 336–340.

    Article  CAS  Google Scholar 

  54. Rampon C, Jiang CH, Dong H, Tang YP, Lockhart DJ, Schultz PG et al. Effects of environmental enrichment on gene expression in the brain. Proc Natl Acad Sci USA 2000; 97: 12880–12884.

    Article  CAS  Google Scholar 

  55. Le Roy I, Carlier M, Roubertoux PL . Sensory and motor development in mice: genes, environment and their interactions. Behav Brain Res 2001; 125: 57–64.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M J H Kas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kas, M., Fernandes, C., Schalkwyk, L. et al. Genetics of behavioural domains across the neuropsychiatric spectrum; of mice and men. Mol Psychiatry 12, 324–330 (2007). https://doi.org/10.1038/sj.mp.4001979

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001979

Keywords

This article is cited by

Search

Quick links