Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ontogenic reduction of Aph-1b mRNA and γ-secretase activity in rats with a complex neurodevelopmental phenotype

Abstract

Selectively bred apomorphine susceptible (APO-SUS) rats display a complex behavioral phenotype remarkably similar to that of human neurodevelopmental disorders, such as schizophrenia. We recently found that the APO-SUS rats have only one or two Aph-1b gene copies (I/I and II/II rats, respectively), whereas their phenotypic counterpart has three copies (III/III). Aph-1b is a component of the γ-secretase enzyme complex that is involved in multiple (neuro)developmental signaling pathways. Nevertheless, surprisingly little is known about γ-secretase expression during development. Here, we performed a longitudinal quantitative PCR study in embryos and the hippocampus of I/I, II/II and III/III rats, and found gene-dosage dependent differences in Aph-1b, but not Aph-1a, mRNA expression throughout pre- and post-natal development. On the basis of the developmental mRNA profiles, we assigned relative activities to the various Aph-1a and -1b gene promoters. Furthermore, in the three rat lines, we observed both tissue-specific and temporal alterations in γ-secretase cleavage activity towards one of its best-known substrates, the amyloid-β precursor protein APP. We conclude that the low levels of Aph-1b mRNA and γ-secretase activity observed in the I/I and II/II rats during the entire developmental period may well underlie their complex phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Cools AR, Brachten R, Heeren D, Willemen A, Ellenbroek B . Search after neurobiological profile of individual-specific features of Wistar rats. Brain Res Bull 1990; 24: 49–69.

    Article  CAS  Google Scholar 

  2. Ellenbroek BA, Cools AR . Apomorphine susceptibility and animal models for psychopathology: genes and environment. Behav Genet 2002; 32: 349–361.

    Article  Google Scholar 

  3. Degen SB, Ellenbroek BA, Wiegant VM, Cools AR . The development of various somatic markers is retarded in an animal model for schizophrenia, namely apomorphine-susceptible rats. Behav Brain Res 2005; 157: 369–377.

    Article  CAS  Google Scholar 

  4. Cools AR, Rots NY, Ellenbroek B, de Kloet ER . Bimodal shape of individual variation in behavior of Wistar rats: the overall outcome of a fundamentally different make-up and reactivity of the brain, the endocrinological and the immunological system. Neuropsychobiology 1993; 28: 100–105.

    Article  CAS  Google Scholar 

  5. Kunugi H, Nanko S, Murray RM . Obstetric complications and schizophrenia: prenatal underdevelopment and subsequent neurodevelopmental impairment. Br J Psychiatry Suppl 2001; 40: s25–29.

    Article  CAS  Google Scholar 

  6. Wahlbeck K, Forsen T, Osmond C, Barker DJ, Eriksson JG . Association of schizophrenia with low maternal body mass index, small size at birth, and thinness during childhood. Arch Gen Psychiatry 2001; 58: 48–52.

    Article  CAS  Google Scholar 

  7. Coolen MW, Van Loo KM, Van Bakel NN, Pulford DJ, Serneels L, De Strooper B et al. Gene dosage effect on gamma-secretase component Aph-1b in a rat model for neurodevelopmental disorders. Neuron 2005; 45: 497–503.

    Article  CAS  Google Scholar 

  8. Kopan R, Ilagan MX . Gamma-secretase: proteasome of the membrane? Nat Rev Mol Cell Biol 2004; 5: 499–504.

    Article  CAS  Google Scholar 

  9. Selkoe D, Kopan R . Notch and Presenilin: regulated intramembrane proteolysis links development and degeneration. Annu Rev Neurosci 2003; 26: 565–597.

    Article  CAS  Google Scholar 

  10. Kimberly WT, Wolfe MS . Identity and function of gamma-secretase. J Neurosci Res 2003; 74: 353–360.

    Article  CAS  Google Scholar 

  11. Herreman A, Van Gassen G, Bentahir M, Nyabi O, Craessaerts K, Mueller U et al. gamma-Secretase activity requires the presenilin-dependent trafficking of nicastrin through the Golgi apparatus but not its complex glycosylation. J Cell Sci 2003; 116: 1127–1136.

    Article  CAS  Google Scholar 

  12. Artavanis-Tsakonas S, Rand MD, Lake RJ . Notch signaling: cell fate control and signal integration in development. Science 1999; 284: 770–776.

    Article  CAS  Google Scholar 

  13. Huang YZ, Won S, Ali DW, Wang Q, Tanowitz M, Du QS et al. Regulation of neuregulin signaling by PSD-95 interacting with ErbB4 at CNS synapses. Neuron 2000; 26: 443–455.

    Article  CAS  Google Scholar 

  14. Turner PR, O'Connor K, Tate WP, Abraham WC . Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol 2003; 70: 1–32.

    Article  CAS  Google Scholar 

  15. Saito S, Araki W . Expression profiles of two human APH-1 genes and their roles in formation of presenilin complexes. Biochem Biophys Res Commun 2005; 327: 18–22.

    Article  CAS  Google Scholar 

  16. Serneels L, Dejaegere T, Craessaerts K, Horre K, Jorissen E, Tousseyn T et al. Differential contribution of the three Aph1 genes to gamma-secretase activity in vivo. Proc Natl Acad Sci USA 2005; 102: 1719–1724.

    Article  CAS  Google Scholar 

  17. Shirotani K, Edbauer D, Prokop S, Haass C, Steiner H . Identification of distinct gamma-secretase complexes with different APH-1 variants. J Biol Chem 2004; 279: 41340–41345.

    Article  CAS  Google Scholar 

  18. Li T, Ma G, Cai H, Price DL, Wong PC . Nicastrin is required for assembly of presenilin/gamma-secretase complexes to mediate Notch signaling and for processing and trafficking of beta-amyloid precursor protein in mammals. J Neurosci 2003; 23: 3272–3277.

    Article  CAS  Google Scholar 

  19. Gu Y, Chen F, Sanjo N, Kawarai T, Hasegawa H, Duthie M et al. APH-1 interacts with mature and immature forms of presenilins and nicastrin and may play a role in maturation of presenilin.nicastrin complexes. J Biol Chem 2003; 278: 7374–7380.

    Article  CAS  Google Scholar 

  20. Chen F, Tandon A, Sanjo N, Gu YJ, Hasegawa H, Arawaka S et al. Presenilin 1 and presenilin 2 have differential effects on the stability and maturation of nicastrin in Mammalian brain. J Biol Chem 2003; 278: 19974–19979.

    Article  CAS  Google Scholar 

  21. Hasegawa H, Sanjo N, Chen F, Gu YJ, Shier C, Petit A et al. Both the sequence and length of the C terminus of PEN-2 are critical for intermolecular interactions and function of presenilin complexes. J Biol Chem 2004; 279: 46455–46463.

    Article  CAS  Google Scholar 

  22. Li J, Fici GJ, Mao CA, Myers RL, Shuang R, Donoho GP et al. Positive and negative regulation of the gamma-secretase activity by nicastrin in a murine model. J Biol Chem 2003; 278: 33445–33449.

    Article  CAS  Google Scholar 

  23. Takasugi N, Tomita T, Hayashi I, Tsuruoka M, Niimura M, Takahashi Y et al. The role of presenilin cofactors in the gamma-secretase complex. Nature 2003; 422: 438–441.

    Article  CAS  Google Scholar 

  24. Zhang YW, Luo WJ, Wang H, Lin P, Vetrivel KS, Liao F et al. Nicastrin is critical for stability and trafficking but not association of other presenilin/gamma-secretase components. J Biol Chem 2005; 280: 17020–17026.

    Article  CAS  Google Scholar 

  25. Herreman A, Hartmann D, Annaert W, Saftig P, Craessaerts K, Serneels L et al. Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. Proc Natl Acad Sci USA 1999; 96: 11872–11877.

    Article  CAS  Google Scholar 

  26. Coolen MW, van Loo KM, van Bakel NN, Ellenbroek BA, Cools AR, Martens GJ . Reduced Aph-1b expression causes tissue- and substrate-specific changes in gamma-secretase activity in rats with a complex phenotype. FASEB J, (published online October 25 2005) 2005.

  27. Knigge KM . Adrenocortical response to stress in rats with lesions in hippocampus and amygdala. Proc Soc Exp Biol Med 1961; 108: 18–21.

    Article  CAS  Google Scholar 

  28. Jacobson L, Sapolsky R . The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocr Rev 1991; 12: 118–134.

    Article  CAS  Google Scholar 

  29. Groenewegen HJ, Wright CI, Beijer AV, Voorn P . Convergence and segregation of ventral striatal inputs and outputs. Ann NY Acad Sci 1999; 877: 49–63.

    Article  CAS  Google Scholar 

  30. Lammers CH, Garcia-Borreguero D, Schmider J, Gotthardt U, Dettling M, Holsboer F et al. Combined dexamethasone/corticotropin-releasing hormone test in patients with schizophrenia and in normal controls: II. Biol Psychiatry 1995; 38: 803–807.

    Article  CAS  Google Scholar 

  31. Muller-Spahn F, Modell S, Ackenheil M, Brachner A, Kurtz G . Elevated response of growth hormone to graded doses of apomorphine in schizophrenic patients. J Psychiatr Res 1998; 32: 265–271.

    Article  CAS  Google Scholar 

  32. Cannon M, Caspi A, Moffitt TE, Harrington H, Taylor A, Murray RM et al. Evidence for early-childhood, pan-developmental impairment specific to schizophreniform disorder: results from a longitudinal birth cohort. Arch Gen Psychiatry 2002; 59: 449–456.

    Article  Google Scholar 

  33. Jones P . The early origins of schizophrenia. Br Med Bull 1997; 53: 135–155.

    Article  CAS  Google Scholar 

  34. Isohanni M, Jones P, Kemppainen L, Croudace T, Isohanni I, Veijola J et al. Childhood and adolescent predictors of schizophrenia in the Northern Finland 1966 birth cohort – a descriptive life-span model. Eur Arch Psychiatry Clin Neurosci 2000; 250: 311–319.

    Article  CAS  Google Scholar 

  35. Kovelman JA, Scheibel AB . A neurohistological correlate of schizophrenia. Biol Psychiatry 1984; 19: 1601–1621.

    CAS  PubMed  Google Scholar 

  36. Bernstein HG, Krell D, Baumann B, Danos P, Falkai P, Diekmann S et al. Morphometric studies of the entorhinal cortex in neuropsychiatric patients and controls: clusters of heterotopically displaced lamina II neurons are not indicative of schizophrenia. Schizophr Res 1998; 33: 125–132.

    Article  CAS  Google Scholar 

  37. Andreasen NC . Schizophrenia: the fundamental questions. Brain Res Brain Res Rev 2000; 31: 106–112.

    Article  CAS  Google Scholar 

  38. Rozmahel R, Huang J, Chen F, Liang Y, Nguyen V, Ikeda M et al. Normal brain development in PS1 hypomorphic mice with markedly reduced gamma-secretase cleavage of betaAPP. Neurobiol Aging 2002; 23: 187–194.

    Article  CAS  Google Scholar 

  39. Ma G, Li T, Price DL, Wong PC . APH-1a is the principal mammalian APH-1 isoform present in gamma-secretase complexes during embryonic development. J Neurosci 2005; 25: 192–198.

    Article  CAS  Google Scholar 

  40. D'Hooge R, Nagels G, Westland CE, Mucke L, De Deyn PP . Spatial learning deficit in mice expressing human 751-amino acid beta-amyloid precursor protein. Neuroreport 1996; 7: 2807–2811.

    Article  CAS  Google Scholar 

  41. Lalonde R, Dumont M, Fukuchi K, Strazielle C . Transgenic mice expressing the human C99 terminal fragment of betaAPP: effects on spatial learning, exploration, anxiety, and motor coordination. Exp Gerontol 2002; 37: 1401–1412.

    Article  CAS  Google Scholar 

  42. Hebert SS, Serneels L, Dejaegere T, Horre K, Dabrowski M, Baert V et al. Coordinated and widespread expression of gamma-secretase in vivo: evidence for size and molecular heterogeneity. Neurobiol Dis 2004; 17: 260–272.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from the Netherlands Organization for Scientific Research (NWO). We thank Luuk Lubbers for animal breeding, Nick van Bakel for technical assistance and Liselotte van der Kam for statistical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G J M Martens.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coolen, M., van Loo, K., Ellenbroek, B. et al. Ontogenic reduction of Aph-1b mRNA and γ-secretase activity in rats with a complex neurodevelopmental phenotype. Mol Psychiatry 11, 787–793 (2006). https://doi.org/10.1038/sj.mp.4001846

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001846

Keywords

This article is cited by

Search

Quick links