Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cellular and molecular mechanisms of hippocampal activation by acute stress are age-dependent

Abstract

The effects of stress, including their putative contribution to pathological psychiatric conditions, are crucially governed by the age at which the stress takes place. However, the cellular and molecular foundations for the impact of stress on neuronal function, and their change with age, are unknown. For example, it is not known whether ‘psychological’ stress signals are perceived by similar neuronal populations at different ages, and whether they activate similar or age-specific signaling pathways that might then mediate the spectrum of stress-evoked neuronal changes. We employed restraint and restraint/noise stress to address these issues in juvenile (postnatal day 18, [P18]) and adult rats, and used phosphorylation of the transcription factor CREB (pCREB) and induction of c-fos as markers of hippocampal neuronal responses. Stress-activated neuronal populations were identified both anatomically and biochemically, and selective blockers of the stress-activated hippocampal peptide, corticotropin-releasing hormone (CRH) were used to probe the role of this molecule in stress-induced hippocampal cell activation. Stress evoked strikingly different neuronal response patterns in immature vs adult hippocampus. Expression of pCREB appeared within minutes in hippocampal CA3 pyramidal cells of P18 rats, followed by delayed induction of Fos protein in the same cell population. In contrast, basal pCREB levels were high in adult hippocampus and were not altered at 10–120 min by stress. Whereas Fos induction was elicited by stress in the adult, it was essentially confined to area CA1, with little induction in CA3. At both age groups, central pretreatment with either a nonselective blocker of CRH receptors (α-helical CRH [9–41]) or the CRF1-selective antagonist, NBI 30775, abolished stress-evoked neuronal activation. In conclusion, hippocampal neuronal responses to psychological stress are generally more rapid and robust in juvenile rats, compared to fully mature adults, and at both ages, CRH plays a key role in this process. Enhanced hippocampal response to stress during development, and particularly the activation of the transcription factor CREB, may contribute to the enduring effects of stress during this period on hippocampal function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 4
Figure 5
Figure 1
Figure 6
Figure 2
Figure 3
Figure 7

Similar content being viewed by others

References

  1. McEwen B . Stress and hippocampal plasticity. Ann Rev Neurosci 1999; 22: 105–122.

    Article  CAS  PubMed  Google Scholar 

  2. Sanchez M, Ladd C, Plotsky P . Early adverse experience as a developmental risk factor for later psychopathology evidence from rodent and primate models. Dev Psychopathol 2001; 13: 419–449.

    Article  CAS  PubMed  Google Scholar 

  3. Welberg LA, Seckl JR . Prenatal stress, glucocorticoids, and the programming of the brain. J Neuroendocrinol 2001; 13: 113–128.

    Article  CAS  PubMed  Google Scholar 

  4. Avishai-Eliner S, Brunson K, Sandman C, Baram TZ . Stressed-out, or in (utero)? Trends Neurosci 2002; 25: 518–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Levine S . Developmental determinants of sensitivity and resistance to stress. Psychoneuroendocrinology 2005; 30: 939–946.

    Article  PubMed  Google Scholar 

  6. Miller DB, O’Callaghan JP . Aging, stress and the hippocampus. Ageing Res Rev 2005; 4: 123–140.

    Article  CAS  PubMed  Google Scholar 

  7. Fenoglio KA, Brunson KL, Baram TZ . Hippocampal neuroplasticity induced by early-life stress: Functional and molecular aspects. Front Neuroendocrinol 2006 [E-pub ahead of print].

  8. Wadhwa PD, Sandman CA, Garite TJ . The neurobiology of stress in human pregnancy: implications for prematurity and development of the fetal central nervous system. Prog Brain Res 2001; 133: 131–142.

    Article  CAS  PubMed  Google Scholar 

  9. Welberg LA, Seckl JR, Holmes MC . Prenatal glucocorticoid programming of brain corticosteroid receptors and corticotrophin-releasing hormone: possible implications for behaviour. Neuroscience 2001; 104: 71–79.

    Article  CAS  PubMed  Google Scholar 

  10. Weinstock M . The potential influence of maternal stress hormones on development and mental health of the offspring. Brain Behav Immun 2005; 19: 296–308.

    Article  CAS  PubMed  Google Scholar 

  11. Vazquez DM . Stress and the developing limbic–hypothalamic–pituitary–adrenal axis. Psychoneuroendocrinology 1998; 23: 663–700.

    Article  CAS  PubMed  Google Scholar 

  12. Walker CD, Toufexis DJ, Burlet A . Hypothalamic and limbic expression of CRF and vasopressin during lactation: implications for the control of ACTH secretion and stress hyporesponsiveness. Prog Brain Res 2001; 133: 99–110.

    Article  CAS  PubMed  Google Scholar 

  13. Benes FM . The role of stress and dopamine–GABA interactions in the vulnerability for schizophrenia. J Psychiatr Res 1997; 31: 257–275.

    Article  CAS  PubMed  Google Scholar 

  14. Isgor C, Kabbaj M, Akil H, Watson SJ . Delayed effects of chronic variable stress during peripubertal-juvenile period on hippocampal morphology and on cognitive and stress axis functions in rats. Hippocampus 2004; 14: 636–648.

    Article  PubMed  Google Scholar 

  15. Landfield PW, Waymire JC, Lynch G . Hippocampal aging and adrenocorticoids: quantitative correlations. Science 1978; 202: 1098–1102.

    Article  CAS  PubMed  Google Scholar 

  16. Hibberd C, Yau JL, Seckl JR . Glucocorticoids and the ageing hippocampus. J Anat 2000; 197: 553–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nichols NR, Zieba M, Bye N . Do glucocorticoids contribute to brain aging? Brain Res Brain Res Rev 2001; 37: 273–286.

    Article  CAS  PubMed  Google Scholar 

  18. Bizon JL, Gallagher M . Production of new cells in the rat dentate gyrus over the lifespan: relation to cognitive decline. Eur J Neurosci 2003; 18: 215–219.

    Article  CAS  PubMed  Google Scholar 

  19. Drapeau E, Mayo W, Aurousseau C, Le Moal M, Piazza PV, Abrous DN . Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis. Proc Natl Acad Sci USA 2003; 100: 14385–14390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Amaral D, Dent J . Development of the mossy fibers of the dentate gyrus. I. A light and electron microscopy study of the mossy fibers and their expansions. J Comp Neurol 1981; 195: 51–86.

    Article  CAS  PubMed  Google Scholar 

  21. Henze D, Urban N, Barrionuevo G . The multifarious hippocampal mossy fiber pathway: a review. Neuroscience 2000; 98: 407–427.

    Article  CAS  PubMed  Google Scholar 

  22. Brunson KL, Kramar E, Lin B, Chen Y, Colgin L, Yanagihara TK et al. Mechanisms of late-onset cognitive decline after early-life stress. J Neurosci 2005; 25: 9328–9338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen Y, Bender R, Frotscher M, Baram TZ . Novel and transient populations of corticotropin-releasing hormone-expressing neurons in developing hippocampus suggest unique functional roles: a quantitative spatio-temporal analysis. J Neurosci 2001; 21: 7171–7181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bilang-Bleuel A, Rech J, De Carli S, Holsboer F, Reul JM . Forced swimming evokes a biphasic response in CREB phosphorylation in extrahypothalamic limbic and neocortical brain structures in the rat. Eur J Neurosci 2002; 15: 1048–1060.

    Article  CAS  PubMed  Google Scholar 

  25. Yi SJ, Baram TZ . Corticotropin-releasing hormone mediates the response to cold stress in the neonatal rat without compensatory enhancement of the peptide's gene expression. Endocrinology 1994; 135: 2364–2368.

    Article  CAS  PubMed  Google Scholar 

  26. Grino M, Paulmyer-Lacroix O, Anglade G, Oliver C . Molecular aspects of the regulation of the hypothalamo-pituitary-adrenal axis during development in the rat. Ann NY Acad Sci 1995; 771: 339–351.

    Article  CAS  PubMed  Google Scholar 

  27. Dent GW, Okimoto DK, Smith MA, Levine S . Stress-induced alterations in corticotropin-releasing hormone and vasopressin gene expression in the paraventricular nucleus during ontogeny. Neuroendocrinology 2000; 71: 333–342.

    Article  CAS  PubMed  Google Scholar 

  28. de Kloet ER, Oitzl MS, Joels M . Stress and cognition: are corticosteroids good or bad guys? Trends Neurosci 1999; 22: 422–426.

    Article  CAS  PubMed  Google Scholar 

  29. Joels M . Modulatory actions of steroid hormones and neuropeptides on electrical activity in brain. Eur J Pharmacol 2000; 405: 207–216.

    Article  CAS  PubMed  Google Scholar 

  30. Kim J, Diamond D . The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci 2002; 3: 453–462.

    Article  CAS  PubMed  Google Scholar 

  31. Magarinos A, McEwen B . Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons comparison of stressors. Neuroscience 1995; 69: 83–88.

    Article  CAS  PubMed  Google Scholar 

  32. Magarinos A, McEwen B . Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience 1995; 69: 89–98.

    Article  CAS  PubMed  Google Scholar 

  33. Sapolsky RM, Krey LC, McEwen BS . Prolonged glucocorticoid exposure reduces hippocampal neuron number: implications for aging. J Neurosci 1985; 5: 1222–1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dachir S, Kadar T, Robinzon B, Levy A . Cognitive deficits induced in young rats by long-term corticosterone administration. Behav Neural Biol 1993; 60: 103–109.

    Article  CAS  PubMed  Google Scholar 

  35. Uno H, Eisele S, Sakai A, Shelton S, Baker E, DeJesus O et al. Neurotoxicity of glucocorticoids in the primate brain. Horm Behav 1994; 28: 336–348.

    Article  CAS  PubMed  Google Scholar 

  36. Karst H, Berger S, Turiault M, Tronche F, Schutz G, Joels M . Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone. Proc Natl Acad Sci USA 2005; 102: 19204–19207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Behan DP, Grigoriadis DE, Lovenberg T, Chalmers D, Heinrichs S, Liaw C et al. Neurobiology of corticotropin releasing factor (CRF) receptors and CRF-binding protein: implications for the treatment of CNS disorders. Mol Psychiatry 1996; 1: 265–2177.

    CAS  PubMed  Google Scholar 

  38. Negrao AB, Licinio J . Stress-responsive neuropeptides in major depression. Mol Psychiatry 1996; 1: 300–301.

    CAS  PubMed  Google Scholar 

  39. Arborelius L, Owens MJ, Plotsky PM, Nemeroff CB . The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol 1999; 160: 1–12.

    Article  CAS  PubMed  Google Scholar 

  40. Bale TL, Vale WW . CRF and CRF receptors: role in stress responsivity and other behaviors. Annu Rev Pharmacol Toxicol 2004; 44: 525–557.

    Article  CAS  PubMed  Google Scholar 

  41. Vale W, Rivier C, Brown MR, Spiess J, Koob G, Swanson L et al. Chemical and biological characterization of corticotropin releasing factor. Recent Prog Horm Res 1983; 39: 245–270.

    CAS  PubMed  Google Scholar 

  42. Watts AG . Glucocorticoid regulation of peptide genes in neuroendocrine CRH neurons: a complexity beyond negative feedback. Front Neuroendocrinol 2005; 26: 109–130.

    Article  CAS  PubMed  Google Scholar 

  43. Brunson KL, Avishai-Eliner S, Hatalski CG, Baram TZ . Neurobiology of the stress response early in life: evolution of a concept and the role of corticotropin releasing hormone. Mol Psychiatry 2001; 6: 647–656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bakshi VP, Kalin NH . Corticotropin-releasing hormone and animal models of anxiety: gene-environment interactions. Biol Psychiatry 2000; 48: 1175–1198.

    Article  CAS  PubMed  Google Scholar 

  45. Jochman KA, Newman SM, Kalin NH, Bakshi VP . Corticotropin-releasing factor-1 receptors in the basolateral amygdala mediate stress-induced anorexia. Behav Neurosci 2005; 119: 1448–1458.

    Article  CAS  PubMed  Google Scholar 

  46. Roozendaal B, Brunson KL, Holloway BL, McGaugh JL, Baram TZ . Involvement of stress-released corticotropin-releasing hormone in the basolateral amygdala in regulating memory consolidation. Proc Natl Acad Sci USA 2002; 99: 13908–13913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu J, Yu B, Neugebauer V, Grigoriadis DE, Rivier J, Vale WW et al. Corticotropin-releasing factor and Urocortin I modulate excitatory glutamatergic synaptic transmission. J Neurosci 2004; 24: 4020–4029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ehlers CL, Henriksen SJ, Wang M, Rivier J, Vale W, Bloom FE . Corticotropin releasing factor produces increases in brain excitability and convulsive seizures in rats. Brain Res 1983; 14: 332–336.

    Article  Google Scholar 

  49. Baram TZ, Hatalski CG . Neuropeptide-mediated excitability: a key triggering mechanism for seizure generation in the developing brain. Trends Neurosci 1998; 21: 471–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Swanson LW, Sawchenko PE, Rivier J, Vale WW . Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrinology 1983; 36: 165–186.

    Article  CAS  PubMed  Google Scholar 

  51. Chen Y, Brunson KL, Adelmann G, Bender RA, Frotscher M, Baram TZ . Hippocampal corticotropin releasing hormone: pre- and postsynaptic location and release by stress. Neuroscience 2004; 126: 533–540.

    Article  CAS  PubMed  Google Scholar 

  52. Coste SC, Kesterson RA, Heldwein KA, Stevens SL, Heard AD, Hollis JH et al. Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2. Nat Genet 2000; 24: 403–409.

    Article  CAS  PubMed  Google Scholar 

  53. Bale TL, Picetti R, Contarino A, Koob GF, Vale WW, Lee KF . Mice deficient for both corticotropin-releasing factor receptor 1 (CRFR1) and CRFR2 have an impaired stress response and display sexually dichotomous anxiety-like behavior. J Neurosci 2002; 22: 193–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Refojo D, Echenique C, Muller MB, Reul JM, Deussing JM, Wurst W et al. Corticotropin-releasing hormone activates ERK1/2 MAPK in specific brain areas. Proc Natl Acad Sci USA 2005; 102: 6183–6188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hatalski CG, Guirguis C, Baram TZ . Corticotropin-releasing factor mRNA expression in the hypothalamic paraventricular nucleus and the central nucleus of the amygdala is modulated by repeated acute stress in the immature rat. J Neuroendocrinol 1998; 10: 663–669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Brunson K, Eghbal-Ahmadi M, Bender R, Chen Y, Baram TZ . Long-term, progressive hippocampal cell loss and dysfunction induced by early-life administration of corticotropin-releasing hormone reproduce the effects of early-life stress. Proc Natl Acad Sci 2001; 98: 8856–8861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen Y, Brunson K, Müller MB, Cariaga W, Baram TZ . Immunocytochemical distribution of corticotropin-releasing hormone receptor type-1 (CRF1)-like immunoreactivity in the mouse brain: light microscopy analysis using an antibody directed against the C-terminus. J Comp Neurol 2000; 420: 305–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bender RA, Lauterborn JC, Gall CM, Cariaga W, Baram TZ . Enhanced CREB phosphorylation in immature dentate gyrus granule cells precedes neurotrophin expression and indicates a specific role of CREB in granule cell differentiation. Eur J Neurosci 2001; 13: 679–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen Y, Bender RA, Brunson KL, Pomper JL, Grigoriadis DE, Wurst W et al. Modulation of dendritic differentiation by corticotropin-releasing factor in the developing hippocampus. Proc Natl Acad Sci USA 2004; 101: 15782–157827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Meyer JS, Terayama Y, Konno S, Akiyama H, Margishvili GM, Mortel KF . Risk factors for cerebral degenerative changes and dementia. Eur Neurol 1998; 39 (Suppl 1): 7–16.

    Article  PubMed  Google Scholar 

  61. Kaplan Z, Iancu I, Bodner E . A review of psychological debriefing after extreme stress. Psychiatr Serv 2001; 52: 824–827.

    Article  CAS  PubMed  Google Scholar 

  62. Gold PW, Wong ML, Chrousos GP, Licinio J . Stress system abnormalities in melancholic and atypical depression: molecular, pathophysiological, and therapeutic implications. Mol Psychiatry 1996; 1: 257–264.

    CAS  PubMed  Google Scholar 

  63. Heim C, Plotsky PM, Nemeroff CB . Importance of studying the contributions of early adverse experience to neurobiological findings in depression. Neuropsychopharmacology 2004; 29: 641–648.

    Article  PubMed  Google Scholar 

  64. Mattson MP, Chan SL . Dysregulation of cellular calcium homeostasis in Alzheimer's disease: bad genes and bad habits. J Mol Neurosci 2001; 17: 205–224.

    Article  CAS  PubMed  Google Scholar 

  65. Mayeux R . Epidemiology of neurodegeneration. Annu Rev Neurosci 2003; 26: 81–104.

    Article  CAS  PubMed  Google Scholar 

  66. Bremner JD, Randall P, Vermetten E, Staib L, Bronen RA, Mazure C et al. Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse – a preliminary report. Biol Psychiatry 1997; 41: 23–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ammerman R, Cassisi J, Hersen M, Hasselt VV . Consequences of physical abuse and neglect in children. Clin Psychol Rev 1986; 6: 291–310.

    Article  Google Scholar 

  68. Kerr DS, Campbell LW, Applegate MD, Brodish A, Landfield PW . Chronic stress-induced acceleration of electrophysiologic and morphometric biomarkers of hippocampal aging. J Neurosci 1991; 11: 1316–1324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Luine V, Villegas M, Martinez C, McEwen B . Repeated stress causes reversible impairments of spatial memory performance. Brain Res 1994; 639: 167–170.

    Article  CAS  PubMed  Google Scholar 

  70. Pavlides C, Nivon L, McEwen B . Effects of chronic stress on hippocampal long-term potentiation. Hippocampus 2002; 12: 245–257.

    Article  PubMed  Google Scholar 

  71. Alfarez D, Joels M, Krugers H . Chronic unpredictable stress impairs long-term potentiation in rat hippocampal CA1 area and dentate gyrus in vitro. Eur J Neurosci 2003; 17: 1928–1934.

    Article  PubMed  Google Scholar 

  72. Blank T, Nijholt I, Spiess J . Molecular determinants mediating effects of acute stress on hippocampus-dependent synaptic plasticity and learning. Mol Neurobiol 2004; 29: 131–138.

    Article  CAS  PubMed  Google Scholar 

  73. Cullinan WE, Herman JP, Battaglia DF, Akil H, Watson SJ . Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience 1995; 64: 477–505.

    Article  CAS  PubMed  Google Scholar 

  74. Kovács KJ . c-Fos as a transcription factor: a stressful (re)view from a functional map. Neurochem Int 1998; 33: 287–297.

    Article  PubMed  Google Scholar 

  75. Li HY, Sawchenko PE . Hypothalamic effector neurons and extended circuitries activated in ‘neurogenic’ stress: a comparison of footshock effects exerted acutely, chronically, and in animals with controlled glucocorticoid levels. J Comp Neurol 1998; 393: 244–266.

    Article  CAS  PubMed  Google Scholar 

  76. Ons S, Marti O, Armario A . Stress-induced activation of the immediate early gene Arc (activity-regulated cytoskeleton-associated protein) is restricted to telencephalic areas in the rat brain: relationship to c-fos mRNA. J Neurochem 2004; 89: 1111–1118.

    Article  CAS  PubMed  Google Scholar 

  77. Montag-Sallaz M, Welzl H, Kuhl D, Montag D, Schachner M . Novelty-induced increased expression of immediate-early genes c-fos and arg 3.1 in the mouse brain. J Neurobiol 1999; 38: 234–246.

    Article  CAS  PubMed  Google Scholar 

  78. Pace TW, Gaylord R, Topczewski F, Girotti M, Rubin B, Spencer RL . Immediate-early gene induction in hippocampus and cortex as a result of novel experience is not directly related to the stressfulness of that experience. Eur J Neurosci 2005; 22: 1679–1690.

    Article  PubMed  Google Scholar 

  79. Hatalski CG, Brunson KL, Tantayanubutr B, Chen Y, Baram TZ . Neuronal activity and stress differentially regulate hippocampal and hypothalamic corticotropin-releasing hormone expression in the immature rat. Neuroscience 2000; 101: 571–580.

    Article  CAS  PubMed  Google Scholar 

  80. Abraham IM, Kovacs KJ . Postnatal handling alters the activation of stress-related neuronal circuitries. Eur J Neurosci 2000; 12: 3003–3014.

    Article  CAS  PubMed  Google Scholar 

  81. Hardingham GE, Bading H . Calcium as a versatile second messenger in the control of gene expression. Microsc Res Tech 1999; 46: 348–355.

    Article  CAS  PubMed  Google Scholar 

  82. Fenoglio KA, Chen Y, Baram TZ . Neuroplasticity of the hypothalamic-pituitary-adrenal axis early in life requires recurrent recruitment of stress-regulating brain regions. J Neurosci 2006; 26: 2434–2442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Muller MB, Zimmermann S, Sillaber I, Hagemeyer TP, Deussing JM, Timpl P et al. Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress. Nat Neurosci 2003; 6: 1100–1107.

    Article  CAS  PubMed  Google Scholar 

  84. Kovács KJ, Sawchenko PE . Sequence of stress induced alterations in indices of synaptic and transcriptional activation in parvocellular neurosecretory neurons. J Neurosci 1996; 16: 262–273.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Baram TZ, Ribak CE . Peptide-induced infant status epilepticus causes neuronal death and synaptic reorganization. NeuroReport 1995; 6: 277–280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Huot R, Plotsky P, Lenox R, McNamara R . Neonatal maternal separation reduces hippocampal mossy fiber density in adult Long Evans rats. Brain Res 2002; 950: 52–63.

    Article  CAS  PubMed  Google Scholar 

  87. Seasholtz AF, Thompson RC, Douglass JO . Identification of a cyclic adenosine monophosphate-responsive element in the rat corticotropin-releasing hormone gene. Mol Endocrinol 1988; 2: 1311–1319.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Michele Hinojosa for excellent editorial assistance. This work was supported in part by NIH NS28912, MH73136 (TZB) and the NARSAD foundation young investigator award (YC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Z Baram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Fenoglio, K., Dubé, C. et al. Cellular and molecular mechanisms of hippocampal activation by acute stress are age-dependent. Mol Psychiatry 11, 992–1002 (2006). https://doi.org/10.1038/sj.mp.4001863

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001863

Keywords

This article is cited by

Search

Quick links