Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

A 3-microRNA scoring system for prognostication in de novo acute myeloid leukemia patients

Abstract

As a highly heterogeneous disease, acute myeloid leukemia (AML) needs fine risk stratification to get an optimal outcome of patients. MicroRNAs have florid biological functions and have critical roles in the pathogenesis and prognosis in AML. Expression levels of some single microRNAs are influential for prognosis, but a system integrating several together and considering the weight of each should be more powerful. We thus analyzed the clinical, genetic and microRNA profiling data of 138 de novo AML patients of our institute. By multivariate analysis, we identified that high expression of hsa-miR-9-5p and hsa-miR-155-5p were independent poor prognostic factors, whereas that of hsa-miR-203 had a trend to be a favorable factor. We constructed a scoring system from expression of these three microRNAs by considering the weight of each. The scores correlated with distinct clinical and biological features and outperformed single microRNA expression in prognostication. In both ours and another validation cohort, higher scores were associated with shorter overall survival, independent of other well-known prognostic factors. By analyzing the mRNA expression profiles, we sorted out several cancer-related pathways highly correlated with the microRNA prognostic signature. We conclude that this 3-microRNA scoring system is simple and powerful for risk stratification of de novo AML patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Ambros V . The functions of animal microRNAs. Nature 2004; 431: 350–355.

    Article  CAS  PubMed  Google Scholar 

  2. Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Marcucci G, Mrozek K, Radmacher MD, Garzon R, Bloomfield CD . The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood 2011; 117: 1121–1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Marcucci G, Radmacher MD, Maharry K, Mrozek K, Ruppert AS, Paschka P et al. MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008; 358: 1919–1928.

    Article  CAS  PubMed  Google Scholar 

  5. Garzon R, Volinia S, Liu CG, Fernandez-Cymering C, Palumbo T, Pichiorri F et al. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 2008; 111: 3183–3189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li Z, Lu J, Sun M, Mi S, Zhang H, Luo RT et al. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci USA 2008; 105: 15535–15540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Popovic R, Riesbeck LE, Velu CS, Chaubey A, Zhang J, Achille NJ et al. Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization. Blood 2009; 113: 3314–3322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Becker H, Marcucci G, Maharry K, Radmacher MD, Mrozek K, Margeson D et al. Favorable prognostic impact of NPM1 mutations in older patients with cytogenetically normal de novo acute myeloid leukemia and associated gene- and microRNA-expression signatures: a Cancer and Leukemia Group B study. J Clin Oncol 2010; 28: 596–604.

    Article  CAS  PubMed  Google Scholar 

  9. Garzon R, Garofalo M, Martelli MP, Briesewitz R, Wang L, Fernandez-Cymering C et al. Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci USA 2008; 105: 3945–3950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jongen-Lavrencic M, Sun SM, Dijkstra MK, Valk PJ, Lowenberg B . MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood 2008; 111: 5078–5085.

    Article  CAS  PubMed  Google Scholar 

  11. Schwind S, Maharry K, Radmacher MD, Mrozek K, Holland KB, Margeson D et al. Prognostic significance of expression of a single microRNA, miR-181a, in cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 2010; 28: 5257–5264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sun SM, Rockova V, Bullinger L, Dijkstra MK, Dohner H, Lowenberg B et al. The prognostic relevance of miR-212 expression with survival in cytogenetically and molecularly heterogeneous AML. Leukemia 2013; 27: 100–106.

    Article  CAS  PubMed  Google Scholar 

  13. Xiong Y, Li Z, Ji M, Tan AC, Bemis J, Tse JV et al. MIR29B regulates expression of MLLT11 (AF1Q), an MLL fusion partner, and low MIR29B expression associates with adverse cytogenetics and poor overall survival in AML. Br J Haematol 2011; 153: 753–757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu C, Wang Y, Kuai W, Sun X, Chen H, Hong Z . Prognostic value of miR-29a expression in pediatric acute myeloid leukemia. Clin Biochem 2013; 46: 49–53.

    Article  CAS  PubMed  Google Scholar 

  15. Zhu YD, Wang L, Sun C, Fan L, Zhu DX, Fang C et al. Distinctive microRNA signature is associated with the diagnosis and prognosis of acute leukemia. Med Oncol 2012; 29: 2323–2331.

    Article  CAS  PubMed  Google Scholar 

  16. Marcucci G, Maharry KS, Metzeler KH, Volinia S, Wu YZ, Mrozek K et al. Clinical role of microRNAs in cytogenetically normal acute myeloid leukemia: miR-155 upregulation independently identifies high-risk patients. J Clin Oncol 2013; 31: 2086–2093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chou WC, Chou SC, Liu CY, Chen CY, Hou HA, Kuo YY et al. TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with intermediate-risk cytogenetics. Blood 2011; 118: 3803–3810.

    Article  CAS  PubMed  Google Scholar 

  18. The Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368: 2059–2074.

    Article  PubMed Central  Google Scholar 

  19. Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 2005; 352: 254–266.

    Article  CAS  PubMed  Google Scholar 

  20. Chou WC, Hou HA, Liu CY, Chen CY, Lin LI, Huang YN et al. Sensitive measurement of quantity dynamics of FLT3 internal tandem duplication at early time points provides prognostic information. Ann Oncol 2011; 22: 696–704.

    Article  PubMed  Google Scholar 

  21. Bacher U, Haferlach C, Kern W, Haferlach T, Schnittger S . Prognostic relevance of FLT3-TKD mutations in AML: the combination matters—an analysis of 3082 patients. Blood 2008; 111: 2527–2537.

    Article  CAS  PubMed  Google Scholar 

  22. Hou HA, Kuo YY, Liu CY, Chou WC, Lee MC, Chen CY et al. DNMT3A mutations in acute myeloid leukemia: stability during disease evolution and clinical implications. Blood 2012; 119: 559–568.

    Article  CAS  PubMed  Google Scholar 

  23. Kramer A, Green J, Pollard J Jr, Tugendreich S . Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 2014; 30: 523–530.

    Article  PubMed  Google Scholar 

  24. Baldus CD, Tanner SM, Ruppert AS, Whitman SP, Archer KJ, Marcucci G et al. BAALC expression predicts clinical outcome of de novo acute myeloid leukemia patients with normal cytogenetics: a Cancer and Leukemia Group B Study. Blood 2003; 102: 1613–1618.

    Article  CAS  PubMed  Google Scholar 

  25. Marcucci G, Baldus CD, Ruppert AS, Radmacher MD, Mrozek K, Whitman SP et al. Overexpression of the ETS-related gene, ERG, predicts a worse outcome in acute myeloid leukemia with normal karyotype: a Cancer and Leukemia Group B study. J Clin Oncol 2005; 23: 9234–9242.

    Article  CAS  PubMed  Google Scholar 

  26. Marcucci G, Maharry K, Whitman SP, Vukosavljevic T, Paschka P, Langer C et al. High expression levels of the ETS-related gene, ERG, predict adverse outcome and improve molecular risk-based classification of cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B Study. J Clin Oncol 2007; 25: 3337–3343.

    Article  CAS  PubMed  Google Scholar 

  27. Heuser M, Beutel G, Krauter J, Dohner K, von Neuhoff N, Schlegelberger B et al. High meningioma 1 (MN1) expression as a predictor for poor outcome in acute myeloid leukemia with normal cytogenetics. Blood 2006; 108: 3898–3905.

    Article  CAS  PubMed  Google Scholar 

  28. Bullinger L, Dohner K, Bair E, Frohling S, Schlenk RF, Tibshirani R et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 2004; 350: 1605–1616.

    Article  CAS  PubMed  Google Scholar 

  29. Kroon E, Krosl J, Thorsteinsdottir U, Baban S, Buchberg AM, Sauvageau G . Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J 1998; 17: 3714–3725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sauvageau G, Thorsteinsdottir U, Eaves CJ, Lawrence HJ, Largman C, Lansdorp PM et al. Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev 1995; 9: 1753–1765.

    Article  CAS  PubMed  Google Scholar 

  31. Antonchuk J, Sauvageau G, Humphries RK . HOXB4-induced expansion of adult hematopoietic stem cells. Cell 2002; 109: 39–45.

    Article  CAS  PubMed  Google Scholar 

  32. Gilliland DG, Griffin JD . The roles of FLT3 in hematopoiesis and leukemia. Blood 2002; 100: 1532–1542.

    Article  CAS  PubMed  Google Scholar 

  33. Yanada M, Matsuo K, Suzuki T, Kiyoi H, Naoe T . Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations for acute myeloid leukemia: a meta-analysis. Leukemia 2005; 19: 1345–1349.

    Article  CAS  PubMed  Google Scholar 

  34. Patel JP, Gonen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med 2012; 366: 1079–1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nakajima K, Yamanaka Y, Nakae K, Kojima H, Ichiba M, Kiuchi N et al. A central role for Stat3 in IL-6-induced regulation of growth and differentiation in M1 leukemia cells. EMBO J 1996; 15: 3651–3658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Meazza R, Basso S, Gaggero A, Detotero D, Trentin L, Pereno R et al. Interleukin (IL)-15 induces survival and proliferation of the growth factor-dependent acute myeloid leukemia M-07e through the IL-2 receptor beta/gamma. Int J Cancer 1998; 78: 189–195.

    Article  CAS  PubMed  Google Scholar 

  37. Mueller BU, Pabst T, Osato M, Asou N, Johansen LM, Minden MD et al. Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood 2002; 100: 998–1007.

    Article  CAS  PubMed  Google Scholar 

  38. Marcucci G, Maharry K, Radmacher MD, Mrozek K, Vukosavljevic T, Paschka P et al. Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid leukemia with high-risk molecular features: a Cancer and Leukemia Group B Study. J Clin Oncol 2008; 26: 5078–5087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cui B, Chen L, Zhang S, Mraz M, Fecteau JF, Yu J et al. MicroRNA-155 influences B-cell receptor signaling and associates with aggressive disease in chronic lymphocytic leukemia. Blood 2014; 124: 546–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Palma CA, Al Sheikha D, Lim TK, Bryant A, Vu TT, Jayaswal V et al. MicroRNA-155 as an inducer of apoptosis and cell differentiation in acute myeloid leukaemia. Mol Cancer 2014; 13: 79.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chen Z, Ma T, Huang C, Hu T, Li J . The pivotal role of microRNA-155 in the control of cancer. J Cell Physiol 2014; 229: 545–550.

    Article  CAS  PubMed  Google Scholar 

  42. Neumeister P, Sill H . Novel face of microRNA-155. Blood 2014; 123: 5–7.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang H, Qi M, Li S, Qi T, Mei H, Huang K et al. microRNA-9 targets matrix metalloproteinase 14 to inhibit invasion, metastasis, and angiogenesis of neuroblastoma cells. Mol Cancer Ther 2012; 11: 1454–1466.

    Article  PubMed  Google Scholar 

  44. Selcuklu SD, Donoghue MT, Rehmet K, de Souza Gomes M, Fort A, Kovvuru P et al. MicroRNA-9 inhibition of cell proliferation and identification of novel miR-9 targets by transcriptome profiling in breast cancer cells. J Biol Chem 2012; 287: 29516–29528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gomez GG, Volinia S, Croce CM, Zanca C, Li M, Emnett R et al. Suppression of microRNA-9 by mutant EGFR signaling upregulates FOXP1 to enhance glioblastoma tumorigenicity. Cancer Res 2014; 74: 1429–1439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. White RA, Neiman JM, Reddi A, Han G, Birlea S, Mitra D et al. Epithelial stem cell mutations that promote squamous cell carcinoma metastasis. J Clin Invest 2013; 123: 4390–4404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fiaschetti G, Abela L, Nonoguchi N, Dubuc AM, Remke M, Boro A et al. Epigenetic silencing of microRNA-9 is associated with HES1 oncogenic activity and poor prognosis of medulloblastoma. Br J Cancer 2014; 110: 636–647.

    Article  CAS  PubMed  Google Scholar 

  48. Wu Z, Wang L, Li G, Liu H, Fan F, Li Z et al. Increased expression of microRNA-9 predicts an unfavorable prognosis in human glioma. Mol Cell Biochem 2013; 384: 263–268.

    Article  CAS  PubMed  Google Scholar 

  49. Chen P, Price C, Li Z, Li Y, Cao D, Wiley A et al. miR-9 is an essential oncogenic microRNA specifically overexpressed in mixed lineage leukemia-rearranged leukemia. Proc Natl Acad Sci USA 2013; 110: 11511–11516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yi R, Poy MN, Stoffel M, Fuchs E . A skin microRNA promotes differentiation by repressing 'stemness'. Nature 2008; 452: 225–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bueno MJ, Perez de Castro I, Gomez de Cedron M, Santos J, Calin GA, Cigudosa JC et al. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell 2008; 13: 496–506.

    Article  CAS  PubMed  Google Scholar 

  52. Okumura T, Shimada Y, Moriyama M, Takei Y, Omura T, Sekine S et al. MicroRNA-203 inhibits the progression of esophageal squamous cell carcinoma with restored epithelial tissue architecture in vivo. Int J Oncol 2014; 44: 1923–1932.

    Article  CAS  PubMed  Google Scholar 

  53. Taube JH, Malouf GG, Lu E, Sphyris N, Vijay V, Ramachandran PP et al. Epigenetic silencing of microRNA-203 is required for EMT and cancer stem cell properties. Sci Rep 2013; 3: 2687.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Takeshita N, Mori M, Kano M, Hoshino I, Akutsu Y, Hanari N et al. miR-203 inhibits the migration and invasion of esophageal squamous cell carcinoma by regulating LASP1. Int J Oncol 2012; 41: 1653–1661.

    Article  CAS  PubMed  Google Scholar 

  55. Wang S, Zhao X, Wang J, Wen Y, Zhang L, Wang D et al. Upregulation of microRNA-203 is associated with advanced tumor progression and poor prognosis in epithelial ovarian cancer. Med Oncol 2013; 30: 681.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants MOST103-2923-B-002-001, MOST102-2325-B-002-028 and MOST103-2314-B-002-131-MY3 from Ministry of Science and Technology (Taiwan), UN103-051 from National Taiwan University Hospital and National Taiwan University College of Medicine and MOHW102-TD-C-111-001 and MOHW103-TD-B-111-04 from Ministry of Health and Welfare (Taiwan).

Author Contributions

M-KC, Y-CC and W-CC analyzed the data and wrote the paper. W-CC and H-FT designed the study and wrote the paper. H-AH and EYC provided important materials and help in the study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W-C Chou or H-F Tien.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuang, MK., Chiu, YC., Chou, WC. et al. A 3-microRNA scoring system for prognostication in de novo acute myeloid leukemia patients. Leukemia 29, 1051–1059 (2015). https://doi.org/10.1038/leu.2014.333

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.333

This article is cited by

Search

Quick links