Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem Cells

Residual normal stem cells can be detected in newly diagnosed chronic myeloid leukemia patients by a new flow cytometric approach and predict for optimal response to imatinib

Abstract

Insensitivity of chronic myeloid leukemia (CML) hematopoietic stem cells to tyrosine kinase inhibitors (TKIs) prevents eradication of the disease and may be involved in clinical resistance. For improved treatment results more knowledge about CML stem cells is needed. We here present a new flow cytometric approach enabling prospective discrimination of CML stem cells from their normal counterparts within single-patient samples. In 24 of 40 newly diagnosed CML patients residual normal CD34+CD38 stem cells could be identified by lower CD34 and CD45 expression, lower forward/sideward light scatter and by differences of lineage marker expression (CD7, CD11b and CD56) and of CD90. fluorescent in situ hybridization (FISH) analysis on Fluorescence-activated cell sorting sorted cells proved that populations were BCR–ABL positive or negative and long-term liquid culture assays with subsequent colony forming unit assays and FISH analysis proved their stem cell character. Patients with residual non-leukemic stem cells had lower clinical risk scores (Sokal, Euro), lower hematological toxicity of imatinib (IM) and better molecular responses to IM than patients without. This new approach will expand our possibilities to separate CML and normal stem cells, present in a single bone marrow or peripheral blood sample, thereby offering opportunities to better identify new CML stem-cell-specific targets. Moreover, it may guide optimal clinical CML management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006; 355: 2408–2417.

    Article  CAS  Google Scholar 

  2. Cortes J, O’Brien S, Borthakur G, Jones D, Ravandi F, Koller C et al. Efficacy of dasatinib in patients (pts) with previously untreated chronic myelogenous leukemia (CML) in early chronic phase (CML-CP). ASH Annu Meet Abstr 2008; 112: 182.

    Google Scholar 

  3. Cortes J, O’Brien S, Jones D, Ferrajoli A, Konopleva M, Borthakur G et al. Efficacy of Nilotinib (formerly AMN107) in Patients (Pts) with Newly Diagnosed, Previously Untreated Philadelphia Chromosome (Ph)-Positive Chronic Myelogenous Leukemia in Early Chronic Phase (CML-CP). ASH Annu Meet Abstr 2008; 112: 446.

    Google Scholar 

  4. Saglio G, Kim DW, Issaragrisil S, le Coutre P, Etienne G, Lobo C et al. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med 2010; 362: 2251–2259.

    Article  CAS  Google Scholar 

  5. Kantarjian H, Shah NP, Hochhaus A, Cortes J, Shah S, Ayala M et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 2010; 362: 2260–2270.

    Article  CAS  Google Scholar 

  6. O’Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 2003; 348: 994–1004.

    Article  Google Scholar 

  7. Copland M, Hamilton A, Elrick LJ, Baird JW, Allan EK, Jordanides N et al. Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood 2006; 107: 4532–4539.

    Article  CAS  Google Scholar 

  8. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351: 657–667.

    Article  CAS  Google Scholar 

  9. Jiang X, Zhao Y, Smith C, Gasparetto M, Turhan A, Eaves A et al. Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia 2007; 21: 926–935.

    Article  CAS  Google Scholar 

  10. White DL, Saunders VA, Dang P, Engler J, Venables A, Zrim S et al. Most CML patients who have a suboptimal response to imatinib have low OCT-1 activity: higher doses of imatinib may overcome the negative impact of low OCT-1 activity. Blood 2007; 110: 4064–4072.

    Article  CAS  Google Scholar 

  11. White DL, Saunders VA, Dang P, Engler J, Zannettino AC, Cambareri AC et al. OCT-1-mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib. Blood 2006; 108: 697–704.

    Article  CAS  Google Scholar 

  12. Jordanides NE, Jorgensen HG, Holyoake TL, Mountford JC . Functional ABCG2 is overexpressed on primary CML CD34+ cells and is inhibited by imatinib mesylate. Blood 2006; 108: 1370–1373.

    Article  CAS  Google Scholar 

  13. van Rhenen A, Moshaver B, Kelder A, Feller N, Nieuwint AW, Zweegman S et al. Aberrant marker expression patterns on the CD34+. Leukemia 2007; 21: 1700–1707.

    Article  CAS  Google Scholar 

  14. Terwijn M, Kelder A, Rutten AP, Zweegman S, Ossenkoppele GJ, Schuurhuis GJ . Specific detection of aberrant and normal stem cells in acute myeloid leukemia patients opens the way for defining highly specific targets for stem cell therapy. ASH Annu Meet Abstr 2008; 112: 1353.

    Google Scholar 

  15. van Rhenen A, van Dongen GA, Kelder A, Rombouts EJ, Feller N, Moshaver B et al. The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells. Blood 2007; 110: 2659–2666.

    Article  CAS  Google Scholar 

  16. Sutherland H, Blair A, Vercauteren S, Zapf R . Detection and clinical significance of human acute myeloid leukaemia progenitors capable of long-term proliferation in vitro. Br J Haematol 2001; 114: 296–306.

    Article  CAS  Google Scholar 

  17. van der Pol MA, Feller N, Roseboom M, Moshaver B, Westra G, Broxterman HJ et al. Assessment of the normal or leukemic nature of CD34+ cells in acute myeloid leukemia with low percentages of CD34 cells. Haematologica 2003; 88: 983–993.

    PubMed  Google Scholar 

  18. Hehlmann R, Hochhaus A, Baccarani M . Chronic myeloid leukaemia. Lancet 2007; 370: 342–350.

    Article  CAS  Google Scholar 

  19. Branford S, Fletcher L, Cross NC, Muller MC, Hochhaus A, Kim DW et al. Desirable performance characteristics for BCR-ABL measurement on an international reporting scale to allow consistent interpretation of individual patient response and comparison of response rates between clinical trials. Blood 2008; 112: 3330–3338.

    Article  CAS  Google Scholar 

  20. Coulombel L, Kalousek DK, Eaves CJ, Gupta CM, Eaves AC . Long-term marrow culture reveals chromosomally normal hematopoietic progenitor cells in patients with Philadelphia chromosome-positive chronic myelogenous leukemia. N Engl J Med 1983; 308: 1493–1498.

    Article  CAS  Google Scholar 

  21. Deenik W, Janssen JJWM, van der HB, Verhoef GE, Smit WM, Kersten MJ et al. Efficacy of escalated imatinib combined with cytarabine in newly diagnosed patients with chronic myeloid leukemia. Haematologica 2010; 95: 914–921.

    Article  CAS  Google Scholar 

  22. Baccarani M, Cortes J, Pane F, Niederwieser D, Saglio G, Apperley J et al. Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. J Clin Oncol 2009; 27: 6041–6051.

    Article  CAS  Google Scholar 

  23. Eaves CJ, Cashman JD, Zoumbos NC, Barnett MJ, Eaves AC . Biological strategies for the selective manipulation of normal and leukemic stem cells. Stem Cells 1993; 11 Suppl 3: 109–121.

    Article  Google Scholar 

  24. Verfaillie CM, Miller WJ, Boylan K, McGlave PB . Selection of benign primitive hematopoietic progenitors in chronic myelogenous leukemia on the basis of HLA-DR antigen expression. Blood 1992; 79: 1003–1010.

    CAS  PubMed  Google Scholar 

  25. Delforge M, Boogaerts MA, McGlave PB, Verfaillie CM . BCR/ABL- CD34(+)HLA-DR- progenitor cells in early chronic phase, but not in more advanced phases, of chronic myelogenous leukemia are polyclonal. Blood 1999; 93: 284–292.

    CAS  PubMed  Google Scholar 

  26. Leemhuis T, Leibowitz D, Cox G, Silver R, Srour EF, Tricot G et al. Identification of BCR/ABL-negative primitive hematopoietic progenitor cells within chronic myeloid leukemia marrow. Blood 1993; 81: 801–807.

    CAS  PubMed  Google Scholar 

  27. Pratt G, Rawstron AC, English AE, Johnson RJ, Jack AS, Morgan GJ et al. Analysis of CD34+ cell subsets in stem cell harvests can more reliably predict rapidity and durability of engraftment than total CD34+ cell dose, but steady state levels do not correlate with bone marrow reserve. Br J Haematol 2001; 114: 937–943.

    Article  CAS  Google Scholar 

  28. Sumikuma T, Shimazaki C, Inaba T, Ochiai N, Okano A, Hatsuse M et al. CD34+/CD90+ cells infused best predict late haematopoietic reconstitution following autologous peripheral blood stem cell transplantation. Br J Haematol 2002; 117: 238–244.

    Article  Google Scholar 

  29. Specchia G, Pastore D, Mestice A, Liso A, Carluccio P, Leo M et al. Early and long-term engraftment after autologous peripheral stem cell transplantation in acute myeloid leukemia patients. Acta Haematol 2006; 116: 229–237.

    Article  Google Scholar 

  30. Buccisano F, Rossi FM, Venditti A, Del Poeta G, Cox MC, Abbruzzese E et al. CD90/Thy-1 is preferentially expressed on blast cells of high risk acute myeloid leukaemias. Br J Haematol 2004; 125: 203–212.

    Article  CAS  Google Scholar 

  31. Colmone A, Amorim M, Pontier AL, Wang S, Jablonski E, Sipkins DA . Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science 2008; 322: 1861–1865.

    Article  CAS  Google Scholar 

  32. Mahon FX, Rea D, Guilhot J, Guilhot F, Huguet F, Nicolini F et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol 2010; 11: 1029–1035.

    Article  CAS  Google Scholar 

  33. Lanza F, Bi S, Castoldi G, Goldman JM . Abnormal expression of N-CAM (CD56) adhesion molecule on myeloid and progenitor cells from chronic myeloid leukemia. Leukemia 1993; 7: 1570–1575.

    CAS  PubMed  Google Scholar 

  34. Eisterer W, Jiang X, Christ O, Glimm H, Lee KH, Pang E et al. Different subsets of primary chronic myeloid leukemia stem cells engraft immunodeficient mice and produce a model of the human disease. Leukemia 2005; 19: 435–441.

    Article  CAS  Google Scholar 

  35. Jiang X, Saw KM, Eaves A, Eaves C . Instability of BCR-ABL gene in primary and cultured chronic myeloid leukemia stem cells. J Natl Cancer Inst 2007; 99: 680–693.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J J W M Janssen.

Ethics declarations

Competing interests

Dr JJWM Janssen and Dr GJ Ossenkoppele received research support and honoraria for consultancy from Novartis.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janssen, J., Deenik, W., Smolders, K. et al. Residual normal stem cells can be detected in newly diagnosed chronic myeloid leukemia patients by a new flow cytometric approach and predict for optimal response to imatinib. Leukemia 26, 977–984 (2012). https://doi.org/10.1038/leu.2011.347

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.347

Keywords

This article is cited by

Search

Quick links