Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Myeloproliferative Neoplasias

Centrosomal targeting of tyrosine kinase activity does not enhance oncogenicity in chronic myeloproliferative disorders

Abstract

Constitutive tyrosine kinase activation by reciprocal chromosomal translocation is a common pathogenetic mechanism in chronic myeloproliferative disorders. Since centrosomal proteins have been recurrently identified as translocation partners of tyrosine kinases FGFR1, JAK2, PDGFRα and PDGFRβ in these diseases, a role for the centrosome in oncogenic transformation has been hypothesized. In this study, we addressed the functional role of centrosomally targeted tyrosine kinase activity. First, centrosomal localization was not routinely found for all chimeric fusion proteins tested. Second, targeting of tyrosine kinases to the centrosome by creating artificial chimeric fusion kinases with the centrosomal targeting domain of AKAP450 failed to enhance the oncogenic transforming potential in both Ba/F3 and U2OS cells, although phospho-tyrosine-mediated signal transduction pathways were initiated at the centrosome. We conclude that the centrosomal localization of constitutively activated tyrosine kinases does not contribute to disease pathogenesis in chronic myeloproliferative disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Delhommeau F, Pisani DF, James C, Casadevall N, Constantinescu S, Vainchenker W . Oncogenic mechanisms in myeloproliferative disorders. Cell Mol Life Sci 2006; 63: 2939–2953.

    Article  CAS  PubMed  Google Scholar 

  2. De Keersmaecker K, Cools J . Chronic myeloproliferative disorders: a tyrosine kinase tale. Leukemia 2006; 20: 200–205.

    Article  CAS  PubMed  Google Scholar 

  3. Macdonald D, Cross NC . Chronic myeloproliferative disorders: the role of tyrosine kinases in pathogenesis, diagnosis and therapy. Pathobiology 2007; 74: 81–88.

    Article  CAS  PubMed  Google Scholar 

  4. Reiter A, Invernizzi R, Cross NC, Cazzola M . Molecular basis of myelodysplastic/myeloproliferative neoplasms. Haematologica 2009; 94: 1634–1638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tefferi A, Gilliland DG . Oncogenes in myeloproliferative disorders. Cell Cycle 2007; 6: 550–566.

    Article  CAS  PubMed  Google Scholar 

  6. Roumiantsev S, Krause DS, Neumann CA, Dimitri CA, Asiedu F, Cross NC et al. Distinct stem cell myeloproliferative/T lymphoma syndromes induced by ZNF198-FGFR1 and BCR-FGFR1 fusion genes from 8p11 translocations. Cancer Cell 2004; 5: 287–298.

    Article  CAS  PubMed  Google Scholar 

  7. Guasch G, Ollendorff V, Borg JP, Birnbaum D, Pebusque MJ . 8p12 stem cell myeloproliferative disorder: the FOP-fibroblast growth factor receptor 1 fusion protein of the t(6;8) translocation induces cell survival mediated by mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt/mTOR pathways. Mol Cell Biol 2001; 21: 8129–8142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guasch G, Mack GJ, Popovici C, Dastugue N, Birnbaum D, Rattner JB et al. FGFR1 is fused to the centrosome-associated protein CEP110 in the 8p12 stem cell myeloproliferative disorder with t(8;9)(p12;q33). Blood 2000; 95: 1788–1796.

    CAS  PubMed  Google Scholar 

  9. Walz C, Chase A, Schoch C, Weisser A, Schlegel F, Hochhaus A et al. The t(8;17)(p11;q23) in the 8p11 myeloproliferative syndrome fuses MYO18A to FGFR1. Leukemia 2005; 19: 1005–1009.

    Article  CAS  PubMed  Google Scholar 

  10. Reiter A, Walz C, Watmore A, Schoch C, Blau I, Schlegelberger B et al. The t(8;9)(p22;p24) is a recurrent abnormality in chronic and acute leukemia that fuses PCM1 to JAK2. Cancer Res 2005; 65: 2662–2667.

    Article  CAS  PubMed  Google Scholar 

  11. Murati A, Gelsi-Boyer V, Adelaide J, Perot C, Talmant P, Giraudier S et al. PCM1-JAK2 fusion in myeloproliferative disorders and acute erythroid leukemia with t(8;9) translocation. Leukemia 2005; 19: 1692–1696.

    Article  CAS  PubMed  Google Scholar 

  12. Bousquet M, Quelen C, De Mas V, Duchayne E, Roquefeuil B, Delsol G et al. The t(8;9)(p22;p24) translocation in atypical chronic myeloid leukaemia yields a new PCM1-JAK2 fusion gene. Oncogene 2005; 24: 7248–7252.

    Article  CAS  PubMed  Google Scholar 

  13. Walz C, Curtis C, Schnittger S, Schultheis B, Metzgeroth G, Schoch C et al. Transient response to imatinib in a chronic eosinophilic leukemia associated with ins(9;4)(q33;q12q25) and a CDK5RAP2-PDGFRA fusion gene. Genes Chromosomes Cancer 2006; 45: 950–956.

    Article  CAS  PubMed  Google Scholar 

  14. Wilkinson K, Velloso ER, Lopes LF, Lee C, Aster JC, Shipp MA et al. Cloning of the t(1;5)(q23;q33) in a myeloproliferative disorder associated with eosinophilia: involvement of PDGFRB and response to imatinib. Blood 2003; 102: 4187–4190.

    Article  CAS  PubMed  Google Scholar 

  15. Vizmanos JL, Novo FJ, Roman JP, Baxter EJ, Lahortiga I, Larrayoz MJ et al. NIN, a gene encoding a CEP110-like centrosomal protein, is fused to PDGFRB in a patient with a t(5;14)(q33;q24) and an imatinib-responsive myeloproliferative disorder. Cancer Res 2004; 64: 2673–2676.

    Article  CAS  PubMed  Google Scholar 

  16. Abe A, Emi N, Tanimoto M, Terasaki H, Marunouchi T, Saito H . Fusion of the platelet-derived growth factor receptor beta to a novel gene CEV14 in acute myelogenous leukemia after clonal evolution. Blood 1997; 90: 4271–4277.

    CAS  PubMed  Google Scholar 

  17. Grand FH, Burgstaller S, Kuhr T, Baxter EJ, Webersinke G, Thaler J et al. p53-Binding protein 1 is fused to the platelet-derived growth factor receptor beta in a patient with a t(5;15)(q33;q22) and an imatinib-responsive eosinophilic myeloproliferative disorder. Cancer Res 2004; 64: 7216–7219.

    Article  CAS  PubMed  Google Scholar 

  18. La Starza R, Rosati R, Roti G, Gorello P, Bardi A, Crescenzi B et al. A new NDE1/PDGFRB fusion transcript underlying chronic myelomonocytic leukaemia in Noonan Syndrome. Leukemia 2007; 21: 830–833.

    Article  CAS  PubMed  Google Scholar 

  19. Luders J, Stearns T . Microtubule-organizing centres: a re-evaluation. Nat Rev Mol Cell Biol 2007; 8: 161–167.

    Article  PubMed  Google Scholar 

  20. Doxsey S, Zimmerman W, Mikule K . Centrosome control of the cell cycle. Trends Cell Biol 2005; 15: 303–311.

    Article  CAS  PubMed  Google Scholar 

  21. Kramer A, Mailand N, Lukas C, Syljuasen RG, Wilkinson CJ, Nigg EA et al. Centrosome-associated Chk1 prevents premature activation of cyclin-B-Cdk1 kinase. Nat Cell Biol 2004; 6: 884–891.

    Article  PubMed  Google Scholar 

  22. Nigg EA . Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer 2002; 2: 815–825.

    Article  CAS  PubMed  Google Scholar 

  23. Pihan GA, Purohit A, Wallace J, Knecht H, Woda B, Quesenberry P et al. Centrosome defects and genetic instability in malignant tumors. Cancer Res 1998; 58: 3974–3985.

    CAS  PubMed  Google Scholar 

  24. Neben K, Giesecke C, Schweizer S, Ho AD, Kramer A . Centrosome aberrations in acute myeloid leukemia are correlated with cytogenetic risk profile. Blood 2003; 101: 289–291.

    Article  CAS  PubMed  Google Scholar 

  25. Giehl M, Fabarius A, Frank O, Hochhaus A, Hafner M, Hehlmann R et al. Centrosome aberrations in chronic myeloid leukemia correlate with stage of disease and chromosomal instability. Leukemia 2005; 19: 1192–1197.

    Article  CAS  PubMed  Google Scholar 

  26. Delaval B, Lelievre H, Birnbaum D . Myeloproliferative disorders: the centrosome connection. Leukemia 2005; 19: 1739–1744.

    Article  CAS  PubMed  Google Scholar 

  27. Delaval B, Letard S, Lelievre H, Chevrier V, Daviet L, Dubreuil P et al. Oncogenic tyrosine kinase of malignant hemopathy targets the centrosome. Cancer Res 2005; 65: 7231–7240.

    Article  CAS  PubMed  Google Scholar 

  28. Lelievre H, Chevrier V, Tassin AM, Birnbaum D . Myeloproliferative disorder FOP-FGFR1 fusion kinase recruits phosphoinositide-3 kinase and phospholipase Cgamma at the centrosome. Mol Cancer 2008; 7: 30.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mikolajka A, Yan X, Popowicz GM, Smialowski P, Nigg EA, Holak TA . Structure of the N-terminal domain of the FOP (FGFR1OP) protein and implications for its dimerization and centrosomal localization. J Mol Biol 2006; 359: 863–875.

    Article  CAS  PubMed  Google Scholar 

  30. Gillingham AK, Munro S . The PACT domain, a conserved centrosomal targeting motif in the coiled-coil proteins AKAP450 and pericentrin. EMBO Rep 2000; 1: 524–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Graser S, Stierhof YD, Lavoie SB, Gassner OS, Lamla S, Le Clech M et al. Cep164, a novel centriole appendage protein required for primary cilium formation. J Cell Biol 2007; 179: 321–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Delgehyr N, Sillibourne J, Bornens M . Microtubule nucleation and anchoring at the centrosome are independent processes linked by ninein function. J Cell Sci 2005; 118 (Pt 8): 1565–1575.

    Article  CAS  PubMed  Google Scholar 

  33. Schwaller J, Anastasiadou E, Cain D, Kutok J, Wojiski S, Williams IR et al. H4(D10S170), a gene frequently rearranged in papillary thyroid carcinoma, is fused to the platelet-derived growth factor receptor beta gene in atypical chronic myeloid leukemia with t(5;10)(q33;q22). Blood 2001; 97: 3910–3918.

    Article  CAS  PubMed  Google Scholar 

  34. Baron U, Freundlieb S, Gossen M, Bujard H . Co-regulation of two gene activities by tetracycline via a bidirectional promoter. Nucleic Acids Res 1995; 23: 3605–3606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pfeifer AC, Kaschek D, Bachmann J, Klingmuller U, Timmer J . Model-based extension of high-throughput to high-content data. BMC Syst Biol 2010; 4: 106.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chen CH, Howng SL, Cheng TS, Chou MH, Huang CY, Hong YR . Molecular characterization of human ninein protein: two distinct subdomains required for centrosomal targeting and regulating signals in cell cycle. Biochem Biophys Res Commun 2003; 308: 975–983.

    Article  CAS  PubMed  Google Scholar 

  37. Bond J, Roberts E, Springell K, Lizarraga SB, Scott S, Higgins J et al. A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size. Nat Genet 2005; 37: 353–355.

    Article  CAS  PubMed  Google Scholar 

  38. Fong KW, Choi YK, Rattner JB, Qi RZ . CDK5RAP2 is a pericentriolar protein that functions in centrosomal attachment of the gamma-tubulin ring complex. Mol Biol Cell 2008; 19: 115–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stover EH, Chen J, Folens C, Lee BH, Mentens N, Marynen P et al. Activation of FIP1L1-PDGFRalpha requires disruption of the juxtamembrane domain of PDGFRalpha and is FIP1L1-independent. Proc Natl Acad Sci USA 2006; 103: 8078–8083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Carroll M, Tomasson MH, Barker GF, Golub TR, Gilliland DG . The TEL/platelet-derived growth factor beta receptor (PDGF beta R) fusion in chronic myelomonocytic leukemia is a transforming protein that self-associates and activates PDGF beta R kinase-dependent signaling pathways. Proc Natl Acad Sci USA 1996; 93: 14845–14850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Giehl M, Fabarius A, Frank O, Erben P, Zheng C, Hafner M et al. Expression of the p210BCR-ABL oncoprotein drives centrosomal hypertrophy and clonal evolution in human U937 cells. Leukemia 2007; 21: 1971–1976.

    Article  CAS  PubMed  Google Scholar 

  42. Fabarius A, Giehl M, Frank O, Spiess B, Zheng C, Muller MC et al. Centrosome aberrations after nilotinib and imatinib treatment in vitro are associated with mitotic spindle defects and genetic instability. Br J Haematol 2007; 138: 369–373.

    Article  CAS  PubMed  Google Scholar 

  43. Fabarius A, Giehl M, Rebacz B, Kramer A, Frank O, Haferlach C et al. Centrosome aberrations and G1 phase arrest after in vitro and in vivo treatment with the SRC/ABL inhibitor dasatinib. Haematologica 2008; 93: 1145–1154.

    Article  CAS  PubMed  Google Scholar 

  44. He Y, Wertheim JA, Xu L, Miller JP, Karnell FG, Choi JK et al. The coiled-coil domain and Tyr177 of bcr are required to induce a murine chronic myelogenous leukemia-like disease by bcr/abl. Blood 2002; 99: 2957–2968.

    Article  CAS  PubMed  Google Scholar 

  45. Bischof D, Pulford K, Mason DY, Morris SW . Role of the nucleophosmin (NPM) portion of the non-Hodgkin's lymphoma-associated NPM-anaplastic lymphoma kinase fusion protein in oncogenesis. Mol Cell Biol 1997; 17: 2312–2325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xiao S, McCarthy JG, Aster JC, Fletcher JA . ZNF198-FGFR1 transforming activity depends on a novel proline-rich ZNF198 oligomerization domain. Blood 2000; 96: 699–704.

    CAS  PubMed  Google Scholar 

  47. Jackson CC, Medeiros LJ, Miranda RN . 8p11 myeloproliferative syndrome: a review. Hum Pathol 2010; 41: 461–476.

    Article  CAS  PubMed  Google Scholar 

  48. Kasyapa C, Gu TL, Nagarajan L, Polakiewicz R, Cowell JK . Phosphorylation of the SSBP2 and ABL proteins by the ZNF198-FGFR1 fusion kinase seen in atypical myeloproliferative disorders as revealed by phosphopeptide-specific MS. Proteomics 2009; 9: 3979–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D Gilliland and E Stover for gently providing Tel-PDGFRβ and FIP1L1-PDGFRα plasmids, A Reiter for the CDK5RAP2-PDGFRα plasmid and M Bornens and Y Hong for ninein plasmids. The pBI-3 vector was kindly provided by H Bujard. We are grateful to the Deutsche José Carreras Leukämie-Stiftung for financial support (DJCLS R 06/04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Krämer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bochtler, T., Kirsch, M., Maier, B. et al. Centrosomal targeting of tyrosine kinase activity does not enhance oncogenicity in chronic myeloproliferative disorders. Leukemia 26, 728–735 (2012). https://doi.org/10.1038/leu.2011.283

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.283

Keywords

Search

Quick links