Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

Peptide vaccination elicits leukemia-associated antigen-specific cytotoxic CD8+ T-cell responses in patients with chronic lymphocytic leukemia

Abstract

The receptor for hyaluronic acid-mediated motility (RHAMM) is a tumor-associated antigen in chronic lymphocytic leukemia (CLL). CD8+ T cells primed with the RHAMM-derived epitope R3, which is restricted by human leukocyte antigen (HLA)-A2, effectively lyse RHAMM+ CLL cells. Therefore, we initiated a phase I clinical trial of R3 peptide vaccination. Six HLA-A2+ CLL patients were vaccinated four times at biweekly intervals with the R3 peptide (ILSLELMKL; 300 μg per dose) emulsified in incomplete Freund's adjuvant; granulocyte-macrophage colony stimulating factor (100 μg per dose) was administered concomitantly. Detailed immunological analyses were conducted throughout the course of peptide vaccination. No severe adverse events greater than CTC I° skin toxicity were observed. Four patients exhibited reduced white blood cell counts during vaccination. In five of six patients, R3-specific CD8+ T cells were detected with the corresponding peptide/HLA-A2 tetrameric complex; these populations were verified functionally in four of five patients using enzyme-linked immunosorbent spot (ELISpot) assays. In patients with clinical responses, we found increased frequencies of R3-specific CD8+ T cells that expressed high levels of CD107a and produced both interferon-γ and granzyme B in response to antigen challenge. Interestingly, vaccination was also associated with the induction of regulatory T cells in four patients. Thus peptide vaccination in six CLL patients was safe and could elicit to some extent specific CD8+ T-cell responses against the tumor antigen RHAMM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Montserrat E . New prognostic markers in CLL. Hematology Am Soc Hematol Educ Program 2006, 279–284.

    Article  Google Scholar 

  2. Eichhorst BF, Busch R, Hopfinger G, Pasold R, Hensel M, Steinbrecher C et al. Fludarabine plus cyclophosphamide versus fludarabine alone in first-line therapy of younger patients with chronic lymphocytic leukemia. Blood 2006; 107: 885–891.

    Article  CAS  PubMed  Google Scholar 

  3. Rai KR, Peterson BL, Appelbaum FR, Kolitz J, Elias L, Shepherd L et al. Fludarabine compared with chlorambucil as primary therapy for chronic lymphocytic leukemia. N Engl J Med 2000; 343: 1750–1757.

    Article  CAS  PubMed  Google Scholar 

  4. Rassenti LZ, Jain S, Keating MJ, Wierda WG, Grever MR, Byrd JC et al. Relative value of ZAP-70, CD38, and immunoglobulin mutation status in predicting aggressive disease in chronic lymphocytic leukemia. Blood 2008; 112: 1923–1930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Krober A, Bloehdorn J, Hafner S, Buhler A, Seiler T, Kienle D et al. Additional genetic high-risk features such as 11q deletion, 17p deletion, and V3-21 usage characterize discordance of ZAP-70 and VH mutation status in chronic lymphocytic leukemia. J Clin Oncol 2006; 24: 969–975.

    Article  PubMed  Google Scholar 

  6. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000; 343: 1910–1916.

    Article  CAS  PubMed  Google Scholar 

  7. Oscier DG, Gardiner AC, Mould SJ, Glide S, Davis ZA, Ibbotson RE et al. Multivariate analysis of prognostic factors in CLL: clinical stage, IGVH gene mutational status, and loss or mutation of the p53 gene are independent prognostic factors. Blood 2002; 100: 1177–1184.

    CAS  PubMed  Google Scholar 

  8. Crespo M, Bosch F, Villamor N, Bellosillo B, Colomer D, Rozman M et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med 2003; 348: 1764–1775.

    Article  CAS  PubMed  Google Scholar 

  9. Ritgen M, Stilgenbauer S, von Neuhoff N, Humpe A, Bruggemann M, Pott C et al. Graft-versus-leukemia activity may overcome therapeutic resistance of chronic lymphocytic leukemia with unmutated immunoglobulin variable heavy-chain gene status: implications of minimal residual disease measurement with quantitative PCR. Blood 2004; 104: 2600–2602.

    Article  CAS  PubMed  Google Scholar 

  10. Tsiodras S, Samonis G, Keating MJ, Kontoyiannis DP . Infection and immunity in chronic lymphocytic leukemia. Mayo Clin Proc 2000; 75: 1039–1054.

    Article  CAS  PubMed  Google Scholar 

  11. Maxwell CA, Keats JJ, Crainie M, Sun X, Yen T, Shibuya E et al. RHAMM is a centrosomal protein that interacts with dynein and maintains spindle pole stability. Mol Biol Cell 2003; 14: 2262–2276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Savani RC, Cao G, Pooler PM, Zaman A, Zhou Z, DeLisser HM . Differential involvement of the hyaluronan (HA) receptors CD44 and receptor for HA-mediated motility in endothelial cell function and angiogenesis. J Biol Chem 2001; 276: 36770–36778.

    Article  CAS  PubMed  Google Scholar 

  13. Hall CL, Yang B, Yang X, Zhang S, Turley M, Samuel S et al. Overexpression of the hyaluronan receptor RHAMM is transforming and is also required for H-ras transformation. Cell 1995; 82: 19–26.

    Article  CAS  PubMed  Google Scholar 

  14. Giannopoulos K, Li L, Bojarska-Junak A, Rolinski J, Dmoszynska A, Hus I et al. Expression of RHAMM/CD168 and other tumor-associated antigens in patients with B-cell chronic lymphocytic leukemia. Int J Oncol 2006; 29: 95–103.

    CAS  PubMed  Google Scholar 

  15. Giannopoulos K, Mertens D, Buhler A, Barth TF, Idler I, Moller P et al. The candidate immunotherapeutical target, the receptor for hyaluronic acid-mediated motility, is associated with proliferation and shows prognostic value in B-cell chronic lymphocytic leukemia. Leukemia 2009; 23: 519–527.

    Article  CAS  PubMed  Google Scholar 

  16. Schmitt M, Schmitt A, Rojewski MT, Chen J, Giannopoulos K, Fei F et al. RHAMM-R3 peptide vaccination in patients with acute myeloid leukemia, myelodysplastic syndrome, and multiple myeloma elicits immunologic and clinical responses. Blood 2008; 111: 1357–1365.

    Article  CAS  PubMed  Google Scholar 

  17. Beyer M, Schultze JL . Regulatory T cells in cancer. Blood 2006; 108: 804–811.

    Article  CAS  PubMed  Google Scholar 

  18. Giannopoulos K, Schmitt M, Kowal M, Wlasiuk P, Bojarska-Junak A, Chen J et al. Characterization of regulatory T cells in patients with B-cell chronic lymphocytic leukemia. Oncol Rep 2008; 20: 677–682.

    PubMed  Google Scholar 

  19. Bojarska-Junak A, Giannopoulos K, Kowal M, Dmoszynska A, Rolinski J . Comparison of methods for determining zeta-chain associated protein - 70 (ZAP-70) expression in patients with B-cell chronic lymphocytic leukemia (B-CLL). Cytometry B Clin Cytom 2006; 70: 293–301.

    Article  PubMed  Google Scholar 

  20. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 2008; 111: 5446–5456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Whelan JA, Dunbar PR, Price DA, Purbhoo MA, Lechner F, Ogg GS et al. Specificity of CTL interactions with peptide-MHC class I tetrameric complexes is temperature dependent. J Immunol 1999; 163: 4342–4348.

    CAS  PubMed  Google Scholar 

  22. Greiner J, Li L, Ringhoffer M, Barth TF, Giannopoulos K, Guillaume P et al. Identification and characterization of epitopes of the receptor for hyaluronic acid-mediated motility (RHAMM/CD168) recognized by CD8+ T cells of HLA-A2-positive patients with acute myeloid leukemia. Blood 2005; 106: 938–945.

    Article  CAS  PubMed  Google Scholar 

  23. Britten CM, Gouttefangeas C, Welters MJ, Pawelec G, Koch S, Ottensmeier C et al. The CIMT-monitoring panel: a two-step approach to harmonize the enumeration of antigen-specific CD8+ T lymphocytes by structural and functional assays. Cancer Immunol Immunother 2008; 57: 289–302.

    Article  CAS  PubMed  Google Scholar 

  24. Beyer M, Kochanek M, Darabi K, Popov A, Jensen M, Endl E et al. Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood 2005; 106: 2018–2025.

    Article  CAS  PubMed  Google Scholar 

  25. Speiser DE, Lienard D, Rufer N, Rubio-Godoy V, Rimoldi D, Lejeune F et al. Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J Clin Invest 2005; 115: 739–746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sakaguchi S, Yamaguchi T, Nomura T, Ono M . Regulatory T cells and immune tolerance. Cell 2008; 133: 775–787.

    Article  CAS  PubMed  Google Scholar 

  27. Weber J . Review: anti-CTLA-4 antibody ipilimumab: case studies of clinical response and immune-related adverse events. Oncologist 2007; 12: 864–872.

    Article  CAS  PubMed  Google Scholar 

  28. Ribas A, Hanson DC, Noe DA, Millham R, Guyot DJ, Bernstein SH et al. Tremelimumab (CP-675,206), a cytotoxic T lymphocyte associated antigen 4 blocking monoclonal antibody in clinical development for patients with cancer. Oncologist 2007; 12: 873–883.

    Article  CAS  PubMed  Google Scholar 

  29. Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 2005; 115: 3623–3633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lio CW, Hsieh CS . A two-step process for thymic regulatory T cell development. Immunity 2008; 28: 100–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bendandi M . Idiotype vaccines for lymphoma: proof-of-principles and clinical trial failures. Nat Rev Cancer 2009; 9: 675–681.

    Article  CAS  PubMed  Google Scholar 

  32. de Cerio AL, Inoges S . Future of idiotypic vaccination for B-cell lymphoma. Expert Rev Vaccines 2009; 8: 43–50.

    Article  PubMed  Google Scholar 

  33. Vuillier F, Maloum K, Thomas EK, Jouanne C, Dighiero G, Scott-Algara D . Functional monocyte-derived dendritic cells can be generated in chronic lymphocytic leukaemia. Br J Haematol 2001; 115: 831–844.

    Article  CAS  PubMed  Google Scholar 

  34. Mami NB, Mohty M, Aurran-Schleinitz T, Olive D, Gaugler B . Blood dendritic cells in patients with chronic lymphocytic leukaemia. Immunobiology 2008; 213: 493–498.

    Article  PubMed  Google Scholar 

  35. Hus I, Rolinski J, Tabarkiewicz J, Wojas K, Bojarska-Junak A, Greiner J et al. Allogeneic dendritic cells pulsed with tumor lysates or apoptotic bodies as immunotherapy for patients with early-stage B-cell chronic lymphocytic leukemia. Leukemia 2005; 19: 1621–1627.

    Article  CAS  PubMed  Google Scholar 

  36. Hus I, Schmitt M, Tabarkiewicz J, Radej S, Wojas K, Bojarska-Junak A et al. Vaccination of B-CLL patients with autologous dendritic cells can change the frequency of leukemia antigen-specific CD8+ T cells as well as CD4+CD25+FoxP3+ regulatory T cells toward an antileukemia response. Leukemia 2008; 22: 1007–1017.

    Article  CAS  PubMed  Google Scholar 

  37. Qin H, Cha SC, Neelapu SS, Lou Y, Wei J, Liu YJ et al. Vaccine site inflammation potentiates idiotype DNA vaccine-induced therapeutic T cell-, and not B cell-, dependent antilymphoma immunity. Blood 2009; 114: 4142–4149.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms Marlies Götz, Mrs Paulina Wlasiuk, Dr Agneszka Bojarska-Junak and Dr Sylwia Chocholska for excellent technical support; we are also grateful to Dr Kristin Ladell for assistance with flow cytometric analyses. The authors are indebted to Annett Habermann and Sabrina Kless for excellent technical assistance. This work was supported by grants from the Else-Kroener-Fresenius Foundation and the Polish Scientific Committee (KBN N402 107 32/3496). KG was supported by the generous KOLUMB scholarship founded by the Polish Foundation for Science. MS received a grant from the German Jose Carreras Leukemia Foundation. DAP is a Medical Research Council (UK) Senior Clinical Fellow. This study was registered at http://ISRCTN.org as ISRCTN32763606 and in EudraCT as 2005-001706-37.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Giannopoulos.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giannopoulos, K., Dmoszynska, A., Kowal, M. et al. Peptide vaccination elicits leukemia-associated antigen-specific cytotoxic CD8+ T-cell responses in patients with chronic lymphocytic leukemia. Leukemia 24, 798–805 (2010). https://doi.org/10.1038/leu.2010.29

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.29

Keywords

This article is cited by

Search

Quick links