Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

Antileukemic activity of valproic acid in chronic lymphocytic leukemia B cells defined by microarray analysis

Abstract

Epigenetic code modifications by histone deacetylase inhibitors have recently been proposed as potential new therapies for hematological malignancies. Chronic lymphocytic leukemia (CLL) remains incurable despite the introduction of new treatments. CLL B cells are characterized by an apoptosis defect rather than excessive proliferation, but proliferation centers have been found in organs such as the bone marrow and lymph nodes. In this study, we analyzed gene expression modifications in CLL B cells after treatment with valproic acid (VPA), a well-tolerated anti-epileptic drug with HDAC inhibitory activity. CLL B cells obtained from 14 patients were treated in vitro with a concentration of 1 mM VPA for 4 h. VPA effects on gene expression were thereafter studied using Affymetrix technology, and some identified genes were validated by real-time PCR and western blot. We observed that VPA induced apoptosis by downregulating several anti-apoptotic genes and by upregulating pro-apoptotic genes. Furthermore, VPA significantly increased chemosensitivity to fludarabine, flavopiridol, bortezomib, thalidomide and lenalidomide. VPA inhibited the proliferation of CpG/IL2-stimulated CLL B cells and modulated many cell cycle messenger RNAs. In conclusion, exposure of CLL B cells to VPA induced apoptosis, potentiated chemotherapeutic agent effects and inhibited proliferation. These data strongly suggest the use of VPA in CLL treatment, particularly in combination with antileukemia agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK . Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999; 94: 1848–1854.

    CAS  PubMed  Google Scholar 

  2. Crespo M, Bosch F, Villamor N, Bellosillo B, Colomer D, Rozman M et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med 2003; 348: 1764–1775.

    Article  CAS  Google Scholar 

  3. Dighiero G, Travade P, Chevret S, Fenaux P, Chastang C, Binet JL . B-cell chronic lymphocytic leukemia: present status and future directions. French Cooperative Group on CLL. Blood 1991; 78: 1901–1914.

    CAS  PubMed  Google Scholar 

  4. Messmer BT, Messmer D, Allen SL, Kolitz JE, Kudalkar P, Cesar D et al. In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J Clin Invest 2005; 115: 755–764.

    Article  CAS  Google Scholar 

  5. Granziero L, Ghia P, Circosta P, Gottardi D, Strola G, Geuna M et al. Survivin is expressed on CD40 stimulation and interfaces proliferation and apoptosis in B-cell chronic lymphocytic leukemia. Blood 2001; 97: 2777–2783.

    Article  CAS  Google Scholar 

  6. Lin TS . What is the optimal initial treatment for chronic lymphocytic leukemia? Oncology (Williston Park) 2007; 21: 1641–1649.

    Google Scholar 

  7. Faderl S, Rai K, Gribben J, Byrd JC, Flinn IW, O'Brien S et al. Phase II study of single-agent bortezomib for the treatment of patients with fludarabine-refractory B-cell chronic lymphocytic leukemia. Cancer 2006; 107: 916–924.

    Article  CAS  Google Scholar 

  8. Byrd JC, Lin TS, Dalton JT, Wu D, Phelps MA, Fischer B et al. Flavopiridol administered using a pharmacologically derived schedule is associated with marked clinical efficacy in refractory, genetically high-risk chronic lymphocytic leukemia. Blood 2007; 109: 399–404.

    Article  CAS  Google Scholar 

  9. Morotti A, Cilloni D, Parvis G, Guerrasio A, Saglio G . Thalidomide-induced partial stable remission in a case of refractory progressive B cell chronic lymphoid leukemia. Leuk Res 2008; 32: 506–507.

    Article  CAS  Google Scholar 

  10. Chanan-Khan A, Miller KC, Musial L, Lawrence D, Padmanabhan S, Takeshita K et al. Clinical efficacy of lenalidomide in patients with relapsed or refractory chronic lymphocytic leukemia: results of a phase II study. J Clin Oncol 2006; 24: 5343–5349.

    Article  CAS  Google Scholar 

  11. Pepper C, Hoy T, Bentley DP . Bcl-2/Bax ratios in chronic lymphocytic leukaemia and their correlation with in vitro apoptosis and clinical resistance. Br J Cancer 1997; 76: 935–938.

    Article  CAS  Google Scholar 

  12. Richon VM, O'Brien JP . Histone deacetylase inhibitors: a new class of potential therapeutic agents for cancer treatment. Clin Cancer Res 2002; 8: 662–664.

    PubMed  Google Scholar 

  13. Thelen P, Schweyer S, Hemmerlein B, Wuttke W, Seseke F, Ringert RH . Expressional changes after histone deacetylase inhibition by valproic acid in LNCaP human prostate cancer cells. Int J Oncol 2004; 24: 25–31.

    CAS  PubMed  Google Scholar 

  14. Olsen CM, Meussen-Elholm ET, Roste LS, Tauboll E . Antiepileptic drugs inhibit cell growth in the human breast cancer cell line MCF7. Mol Cell Endocrinol 2004; 213: 173–179.

    Article  CAS  Google Scholar 

  15. Kamitani H, Taniura S, Watanabe K, Sakamoto M, Watanabe T, Eling T . Histone acetylation may suppress human glioma cell proliferation when p21 WAF/Cip1 and gelsolin are induced. Neuro Oncol 2002; 4: 95–101.

    Article  CAS  Google Scholar 

  16. Cinatl Jr J, Kotchetkov R, Blaheta R, Driever PH, Vogel JU, Cinatl J . Induction of differentiation and suppression of malignant phenotype of human neuroblastoma BE(2)-C cells by valproic acid: enhancement by combination with interferon-alpha. Int J Oncol 2002; 20: 97–106.

    CAS  PubMed  Google Scholar 

  17. Tang R, Faussat AM, Majdak P, Perrot JY, Chaoui D, Legrand O et al. Valproic acid inhibits proliferation and induces apoptosis in acute myeloid leukemia cells expressing P-gp and MRP1. Leukemia 2004; 18: 1246–1251.

    Article  CAS  Google Scholar 

  18. Tsapis M, Lieb M, Manzo F, Shankaranarayanan P, Herbrecht R, Lutz P et al. HDAC inhibitors induce apoptosis in glucocorticoid-resistant acute lymphatic leukemia cells despite a switch from the extrinsic to the intrinsic death pathway. Int J Biochem Cell Biol 2007; 39: 1500–1509.

    Article  CAS  Google Scholar 

  19. Kuendgen A, Gattermann N . Valproic acid for the treatment of myeloid malignancies. Cancer 2007; 110: 943–954.

    Article  CAS  Google Scholar 

  20. Lagneaux L, Gillet N, Stamatopoulos B, Delforge A, Dejeneffe M, Massy M et al. Valproic acid induces apoptosis in chronic lymphocytic leukemia cells through activation of the death receptor pathway and potentiates TRAIL response. Exp Hematol 2007; 35: 1527–1537.

    Article  CAS  Google Scholar 

  21. Bokelmann I, Mahlknecht U . Valproic acid sensitizes chronic lymphocytic leukemia cells to apoptosis and restores the balance between pro- and antiapoptotic proteins. Mol Med 2008; 14: 20–27.

    Article  CAS  Google Scholar 

  22. Bouzar AB, Boxus M, Defoiche J, Berchem G, Macallan D, Pettengell R et al. Valproate synergizes with purine nucleoside analogues to induce apoptosis of B-chronic lymphocytic leukaemia cells. Br J Haematol 2009; 144: 41–52.

    Article  CAS  Google Scholar 

  23. Garcia-Manero G, Kantarjian HM, Sanchez-Gonzalez B, Yang H, Rosner G, Verstovsek S et al. Phase 1/2 study of the combination of 5-aza-2′-deoxycytidine with valproic acid in patients with leukemia. Blood 2006; 108: 3271–3279.

    Article  CAS  Google Scholar 

  24. Blum W, Klisovic RB, Hackanson B, Liu Z, Liu S, Devine H et al. Phase I study of decitabine alone or in combination with valproic acid in acute myeloid leukemia. J Clin Oncol 2007; 25: 3884–3891.

    Article  CAS  Google Scholar 

  25. Munster P, Marchion D, Bicaku E, Schmitt M, Lee JH, DeConti R et al. Phase I trial of histone deacetylase inhibition by valproic acid followed by the topoisomerase II inhibitor epirubicin in advanced solid tumors: a clinical and translational study. J Clin Oncol 2007; 25: 1979–1985.

    Article  CAS  Google Scholar 

  26. Rocca A, Minucci S, Tosti G, Croci D, Contegno F, Ballarini M et al. A phase I-II study of the histone deacetylase inhibitor valproic acid plus chemoimmunotherapy in patients with advanced melanoma. Br J Cancer 2009; 100: 28–36.

    Article  CAS  Google Scholar 

  27. Ten Cate B, Samplonius DF, Bijma T, de Leij LF, Helfrich W, Bremer E . The histone deacetylase inhibitor valproic acid potently augments gemtuzumab ozogamicin-induced apoptosis in acute myeloid leukemic cells. Leukemia 2007; 21: 248–252.

    Article  CAS  Google Scholar 

  28. Morotti A, Cilloni D, Messa F, Arruga F, Defilippi I, Carturan S et al. Valproate enhances imatinib-induced growth arrest and apoptosis in chronic myeloid leukemia cells. Cancer 2006; 106: 1188–1196.

    Article  CAS  Google Scholar 

  29. Stamatopoulos B, Meuleman N, Haibe-Kains B, Duvillier H, Massy M, Martiat P et al. Quantification of ZAP70 mRNA in B cells by real-time PCR is a powerful prognostic factor in chronic lymphocytic leukemia. Clin Chem 2007; 53: 1757–1766.

    Article  CAS  Google Scholar 

  30. Heimann P, Devalck C, Debusscher C, Sariban E, Vamos E . Alveolar soft-part sarcoma: further evidence by FISH for the involvement of chromosome band 17q25. Genes Chromosomes Cancer 1998; 23: 194–197.

    Article  CAS  Google Scholar 

  31. Campbell MJ, Zelenetz AD, Levy S, Levy R . Use of family specific leader region primers for PCR amplification of the human heavy chain variable region gene repertoire. Mol Immunol 1992; 29: 193–203.

    Article  Google Scholar 

  32. Ronzoni S, Faretta M, Ballarini M, Pelicci P, Minucci S . New method to detect histone acetylation levels by flow cytometry. Cytometry A 2005; 66: 52–61.

    Article  Google Scholar 

  33. Finzer P, Ventz R, Kuntzen C, Seibert N, Soto U, Rosl F . Growth arrest of HPV-positive cells after histone deacetylase inhibition is independent of E6/E7 oncogene expression. Virology 2002; 304: 265–273.

    Article  CAS  Google Scholar 

  34. Longo PG, Laurenti L, Gobessi S, Sica S, Leone G, Efremov DG . The Akt/Mcl-1 pathway plays a prominent role in mediating antiapoptotic signals downstream of the B-cell receptor in chronic lymphocytic leukemia B cells. Blood 2008; 111: 846–855.

    Article  CAS  Google Scholar 

  35. Chen J, Ghazawi FM, Bakkar W, Li Q . Valproic acid and butyrate induce apoptosis in human cancer cells through inhibition of gene expression of Akt/protein kinase B. Mol Cancer 2006; 5: 71.

    Article  CAS  Google Scholar 

  36. Atmaca A, Al Batran SE, Maurer A, Neumann A, Heinzel T, Hentsch B et al. Valproic acid (VPA) in patients with refractory advanced cancer: a dose escalating phase I clinical trial. Br J Cancer 2007; 97: 177–182.

    Article  CAS  Google Scholar 

  37. Momparler RL . Cancer epigenetics. Oncogene 2003; 22: 6479–6483.

    Article  CAS  Google Scholar 

  38. Wang J, Coombes KR, Highsmith WE, Keating MJ, Abruzzo LV . Differences in gene expression between B-cell chronic lymphocytic leukemia and normal B cells: a meta-analysis of three microarray studies. Bioinformatics 2004; 20: 3166–3178.

    Article  CAS  Google Scholar 

  39. Duenas-Gonzalez A, Candelaria M, Perez-Plascencia C, Perez-Cardenas E, Cruz-Hernandez E, Herrera LA . Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Cancer Treat Rev 2008; 34: 206–222.

    Article  CAS  Google Scholar 

  40. Aleskog A, Larsson R, Hoglund M, Kristensen J, Nygren P, Lindhagen E . In vitro drug resistance in B cell chronic lymphocytic leukemia: a comparison with acute myelocytic and acute lymphocytic leukemia. Anticancer Drugs 2005; 16: 277–283.

    Article  CAS  Google Scholar 

  41. Keating MJ, O'Brien S, Kontoyiannis D, Plunkett W, Koller C, Beran M et al. Results of first salvage therapy for patients refractory to a fludarabine regimen in chronic lymphocytic leukemia. Leuk Lymphoma 2002; 43: 1755–1762.

    Article  CAS  Google Scholar 

  42. Flinn IW, Byrd JC, Bartlett N, Kipps T, Gribben J, Thomas D et al. Flavopiridol administered as a 24 h continuous infusion in chronic lymphocytic leukemia lacks clinical activity. Leuk Res 2005; 29: 1253–1257.

    Article  CAS  Google Scholar 

  43. Andritsos LA, Johnson AJ, Lozanski G, Blum W, Kefauver C, Awan F et al. Higher doses of lenalidomide are associated with unacceptable toxicity including life-threatening tumor flare in patients with chronic lymphocytic leukemia. J Clin Oncol 2008; 26: 2519–2525.

    Article  CAS  Google Scholar 

  44. Herweijer H, Sonneveld P, Baas F, Nooter K . Expression of mdr1 and mdr3 multidrug-resistance genes in human acute and chronic leukemias and association with stimulation of drug accumulation by cyclosporine. J Natl Cancer Inst 1990; 82: 1133–1140.

    Article  CAS  Google Scholar 

  45. Sonneveld P, Nooter K, Burghouts JT, Herweijer H, Adriaansen HJ, van Dongen JJ . High expression of the mdr3 multidrug-resistance gene in advanced-stage chronic lymphocytic leukemia. Blood 1992; 79: 1496–1500.

    CAS  PubMed  Google Scholar 

  46. Kaiser M, Zavrski I, Sterz J, Jakob C, Fleissner C, Kloetzel PM et al. The effects of the histone deacetylase inhibitor valproic acid on cell cycle, growth suppression and apoptosis in multiple myeloma. Haematologica 2006; 91: 248–251.

    CAS  PubMed  Google Scholar 

  47. Siitonen T, Koistinen P, Savolainen ER . Increase in Ara-C cytotoxicity in the presence of valproate, a histone deacetylase inhibitor, is associated with the concurrent expression of cyclin D1 and p27(Kip 1) in acute myeloblastic leukemia cells. Leuk Res 2005; 29: 1335–1342.

    Article  CAS  Google Scholar 

  48. Gil-Gomez G, Berns A, Brady HJ . A link between cell cycle and cell death: Bax and Bcl-2 modulate Cdk2 activation during thymocyte apoptosis. EMBO J 1998; 17: 7209–7218.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financed by FRIA grant (Fonds de Recherche pour l’Industrie et l’Agriculture) and the Télévie fund, both of which are affiliated with the FRS–FNRS (Fonds de la Recherche Scientifique–FNRS) and by the ‘Fédération belge contre le cancer’. BS (FRIA fellow), CD (scientific research worker) and LL (senior research associate) are members of the FNRS. BS performed the research, analyzed the data, made the figures and tables, performed statistical analysis, and wrote the paper. NM, DB and PM contributed to patient samples and data. CD contributed to flow cytometry experiments. LL designed, supervised the research, corrected and revised the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Stamatopoulos.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stamatopoulos, B., Meuleman, N., De Bruyn, C. et al. Antileukemic activity of valproic acid in chronic lymphocytic leukemia B cells defined by microarray analysis. Leukemia 23, 2281–2289 (2009). https://doi.org/10.1038/leu.2009.176

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.176

Keywords

This article is cited by

Search

Quick links