Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

Tyrosine kinase inhibition in diffuse large B-cell lymphoma: molecular basis for antitumor activity and drug resistance of dasatinib

Abstract

Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma. Although some patients can be cured by current therapies, novel agents are needed to further improve outcomes. We hypothesized that Src tyrosine kinase inhibition by dasatinib may have antilymphoma effects. Here, we demonstrate that dasatinib inhibits cell growth through G1-S blockage in five of seven DLBCL cell lines at clinically achievable concentrations. Compared to resting B cells, DLBCL has increased tyrosine phosphorylation activities. As expected, dasatinib inhibits phosphorylation of several Src family kinase members. However, this inhibition occurs in all cell lines regardless of their proliferative response to the drug. In contrast, the activity of two downstream signaling molecules, Syk and phospholipase Cγ2 (PLCγ2), are well correlated with cell line sensitivity to dasatinib, suggesting that these molecules are crucial in mediating the proliferation of activated lymphoma cells. Furthermore, dasatinib inhibits B-cell receptor signaling in primary lymphoma cells. Together, our findings not only show dasatinib as a potentially useful therapy for DLBCL but also provide insights into the pathogenesis of the lymphoma. The results further suggest the possibility of using Syk and PLCγ2 as biomarkers to predict dasatinib therapeutic response in prospective clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Sehn LH . Optimal use of prognostic factors in non-Hodgkin lymphoma. Hematology (Am Soc Hematol Educ Program) 2006, 295–302.

    Article  Google Scholar 

  2. Andrew T, Lister BC, Armitage JO . Non-Hodgkin's lymphoma. In: Martin D. Abeloff, James O. Armitage JEN, Michael B. Kastan, W. Gillies McKenna (eds). Clinical Oncology. (e 3rd edn) Churchill Livingstone: Philadelphia PA, 2004, pp 3015–3076.

    Google Scholar 

  3. De Paepe P, De Wolf-Peeters C . Diffuse large B-cell lymphoma: a heterogeneous group of non-Hodgkin lymphomas comprising several distinct clinicopathological entities. Leukemia 2007; 21: 37–43.

    Article  CAS  PubMed  Google Scholar 

  4. Abramson JS, Shipp MA . Advances in the biology and therapy of diffuse large B-cell lymphoma: moving toward a molecularly targeted approach. Blood 2005; 106: 1164–1174.

    Article  CAS  PubMed  Google Scholar 

  5. Coiffier B . Rituximab therapy in malignant lymphoma. Oncogene 2007; 26: 3603–3613.

    Article  CAS  PubMed  Google Scholar 

  6. Kuppers R . Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer 2005; 5: 251–262.

    Article  PubMed  Google Scholar 

  7. Rodriguez A, Villuendas R, Yanez L, Gomez ME, Diaz R, Pollan M et al. Molecular heterogeneity in chronic lymphocytic leukemia is dependent on BCR signaling: clinical correlation. Leukemia 2007; 21: 1984–1991.

    Article  CAS  PubMed  Google Scholar 

  8. Dal Porto JM, Gauld SB, Merrell KT, Mills D, Pugh-Bernard AE, Cambier J . B cell antigen receptor signaling 101. Mol Immunol 2004; 41: 599–613.

    Article  CAS  PubMed  Google Scholar 

  9. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403: 503–511.

    Article  CAS  PubMed  Google Scholar 

  10. Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 2002; 346: 1937–1947.

    Article  PubMed  Google Scholar 

  11. Wright G, Tan B, Rosenwald A, Hurt EH, Wiestner A, Staudt LM . A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc Natl Acad Sci USA 2003; 100: 9991–9996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Monti S, Savage KJ, Kutok JL, Feuerhake F, Kurtin P, Mihm M et al. Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood 2005; 105: 1851–1861.

    Article  CAS  PubMed  Google Scholar 

  13. Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 2002; 8: 68–74.

    Article  CAS  PubMed  Google Scholar 

  14. Wang YL, Frauwirth KA, Rangwala SM, Lazar MA, Thompson CB . Thiazolidinedione activation of peroxisome proliferator-activated receptor gamma can enhance mitochondrial potential and promote cell survival. J Biol Chem 2002; 277: 31781–31788.

    Article  CAS  PubMed  Google Scholar 

  15. Anagostopoulos I, Dallenbach F, Stein H . Diffuse large cell lymphomas. In: Knowles DM (ed). Neoplastic Hematopathology, 2nd edn, Lippincott Williams &Wilkins: Philadelphia, PA, 2001, pp 855–913.

    Google Scholar 

  16. Hans CP, Weisenburger DD, Greiner TC, Gascoyne RD, Delabie J, Ott G et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood 2004; 103: 275–282.

    Article  CAS  PubMed  Google Scholar 

  17. Chang CC, McClintock S, Cleveland RP, Trzpuc T, Vesole DH, Logan B et al. Immunohistochemical expression patterns of germinal center and activation B-cell markers correlate with prognosis in diffuse large B-cell lymphoma. Am J Surg Pathol 2004; 28: 464–470.

    Article  PubMed  Google Scholar 

  18. Haarer CF, Roberts RA, Frutiger YM, Grogan TM, Rimsza LM . Immunohistochemical classification of de novo, transformed, and relapsed diffuse large B-cell lymphoma into germinal center B-cell and nongerminal center B-cell subtypes correlates with gene expression profile and patient survival. Arch Pathol Lab Med 2006; 130: 1819–1824.

    PubMed  Google Scholar 

  19. Salazar EP, Rozengurt E . Src family kinases are required for integrin-mediated but not for G protein-coupled receptor stimulation of focal adhesion kinase autophosphorylation at Tyr-397. J Biol Chem 2001; 276: 17788–17795.

    Article  CAS  PubMed  Google Scholar 

  20. Contri A, Brunati AM, Trentin L, Cabrelle A, Miorin M, Cesaro L et al. Chronic lymphocytic leukemia B cells contain anomalous Lyn tyrosine kinase, a putative contribution to defective apoptosis. J Clin Invest 2005; 115: 369–378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Spreafico A SS, Serchi T, Orlandini M, Angelucci A, Magrini D, Bernardini G et al. Antiproliferative and proapoptotic activities of new pyrazolo[3,4-d]p yrimidine derivative Src kinase inhibitors in human osteosarcoma cells. FASEB J 2008 2008; 22: 1560–1571.

    Article  PubMed  Google Scholar 

  22. Nunoda K, Tauchi T, Takaku T, Okabe S, Akahane D, Sashida G et al. Identification and functional signature of genes regulated by structurally different ABL kinase inhibitors. Oncogene 2007; 26: 4179–4188.

    Article  CAS  PubMed  Google Scholar 

  23. Muris JJ, Cillessen SA, Vos W, van Houdt IS, Kummer JA, van Krieken JH et al. Immunohistochemical profiling of caspase signaling pathways predicts clinical response to chemotherapy in primary nodal diffuse large B-cell lymphomas. Blood 2005; 105: 2916–2923.

    Article  CAS  PubMed  Google Scholar 

  24. Muris JJ, Meijer CJ, Vos W, van Krieken JH, Jiwa NM, Ossenkoppele GJ et al. Immunohistochemical profiling based on Bcl-2, CD10 and MUM1 expression improves risk stratification in patients with primary nodal diffuse large B cell lymphoma. J Pathol 2006; 208: 714–723.

    Article  CAS  PubMed  Google Scholar 

  25. Duckett CS, Nava VE, Gedrich RW, Clem RJ, Van Dongen JL, Gilfillan MC et al. A conserved family of cellular genes related to the baculovirus iap gene and encoding apoptosis inhibitors. EMBO J 1996; 15: 2685–2694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liston P, Roy N, Tamai K, Lefebvre C, Baird S, Cherton-Horvat G et al. Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 1996; 379: 349–353.

    Article  CAS  PubMed  Google Scholar 

  27. Irish JM, Czerwinski DK, Nolan GP, Levy R . Kinetics of B cell receptor signaling in human B cell subsets mapped by phosphospecific flow cytometry. J Immunol 2006; 177: 1581–1589.

    Article  CAS  PubMed  Google Scholar 

  28. Johnson FM, Saigal B, Talpaz M, Donato NJ . Dasatinib (BMS-354825) tyrosine kinase inhibitor suppresses invasion and induces cell cycle arrest and apoptosis of head and neck squamous cell carcinoma and non-small cell lung cancer cells. Clin Cancer Res 2005; 11: 6924–6932.

    Article  CAS  PubMed  Google Scholar 

  29. Schittenhelm MM, Shiraga S, Schroeder A, Corbin AS, Griffith D, Lee FY et al. Dasatinib (BMS-354825), a dual SRC/ABL kinase inhibitor, inhibits the kinase activity of wild-type, juxtamembrane, and activation loop mutant KIT isoforms associated with human malignancies. Cancer Res 2006; 66: 473–481.

    Article  CAS  PubMed  Google Scholar 

  30. Serrels A, Macpherson IR, Evans TR, Lee FY, Clark EA, Sansom OJ et al. Identification of potential biomarkers for measuring inhibition of Src kinase activity in colon cancer cells following treatment with dasatinib. Mol Cancer Ther 2006; 5: 3014–3022.

    Article  CAS  PubMed  Google Scholar 

  31. Tsao AS, He D, Saigal B, Liu S, Lee JJ, Bakkannagari S et al. Inhibition of c-Src expression and activation in malignant pleural mesothelioma tissues leads to apoptosis, cell cycle arrest, and decreased migration and invasion. Mol Cancer Ther 2007; 6: 1962–1972.

    Article  CAS  PubMed  Google Scholar 

  32. Finn RS, Dering J, Ginther C, Wilson CA, Glaspy P, Tchekmedyian N et al. Dasatinib, an orally active small molecule inhibitor of both the src and abl kinases, selectively inhibits growth of basal-type/‘triple-negative’ breast cancer cell lines growing in vitro . Breast Cancer Res Treat 2007; 105: 319–326.

    Article  CAS  PubMed  Google Scholar 

  33. Quintas-Cardama A, Kantarjian H, O’Brien S, Borthakur G, Bruzzi J, Munden R et al. Pleural effusion in patients with chronic myelogenous leukemia treated with dasatinib after imatinib failure. J Clin Oncol 2007; 25: 3908–3914.

    Article  CAS  PubMed  Google Scholar 

  34. Carter TA, Wodicka LM, Shah NP, Velasco AM, Fabian MA, Treiber DK et al. Inhibition of drug-resistant mutants of ABL, KIT, and EGF receptor kinases. Proc Natl Acad Sci USA 2005; 102: 11011–11016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sprangers M, Feldhahn N, Herzog S, Hansmann ML, Reppel M, Hescheler J et al. The SRC family kinase LYN redirects B cell receptor signaling in human SLP65-deficient B cell lymphoma cells. Oncogene 2006; 25: 5056–5062.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y L Wang.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, C., Lu, P., Lee, F. et al. Tyrosine kinase inhibition in diffuse large B-cell lymphoma: molecular basis for antitumor activity and drug resistance of dasatinib. Leukemia 22, 1755–1766 (2008). https://doi.org/10.1038/leu.2008.163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.163

Keywords

This article is cited by

Search

Quick links