Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

Aberrant expression of Notch1 interferes with the B-lymphoid phenotype of neoplastic B cells in classical Hodgkin lymphoma

Abstract

Plasticity of committed mouse B cells has been demonstrated by inactivation of the B-cell commitment transcription factor PAX5, resulting in loss of the B-cell phenotype and differentiation into various hematopoietic lineages. Furthermore, mature mouse B cells could be reprogrammed into macrophages by overexpression of myeloid-specific transcription factors. Here, we report that aberrant activity of the transmembrane receptor, Notch1, interferes with the B-lymphoid phenotype of mature human germinal center-derived B cells in Hodgkin lymphoma, so called Hodgkin and Reed–Sternberg cells. They have lost the B-cell phenotype despite their mature B-cell origin. Notch1 remodels the B-cell transcription factor network by antagonizing the key transcription factors E2A and early B-cell factor (EBF). Through this mechanism, B lineage-specific genes were suppressed and B lineage-inappropriate genes were induced. We provide evidence that absence of the Notch inhibitor Deltex1 contributes to deregulated Notch activity in Hodgkin and Reed–Sternberg cells. These data suggest that Notch activation interferes with dedifferentiation of neoplastic B cells in Hodgkin lymphoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Matthias P, Rolink AG . Transcriptional networks in developing and mature B cells. Nat Rev Immunol 2005; 5: 497–508.

    Article  CAS  PubMed  Google Scholar 

  2. O′Riordan M, Grosschedl R . Coordinate regulation of B cell differentiation by the transcription factors EBF and E2A. Immunity 1999; 11: 21–31.

    Article  PubMed  Google Scholar 

  3. Sigvardsson M, O′Riordan M, Grosschedl R . EBF and E47 collaborate to induce expression of the endogenous immunoglobulin surrogate light chain genes. Immunity 1997; 7: 25–36.

    Article  CAS  PubMed  Google Scholar 

  4. Gisler R, Jacobsen SE, Sigvardsson M . Cloning of human early B-cell factor and identification of target genes suggest a conserved role in B-cell development in man and mouse. Blood 2000; 96: 1457–1464.

    CAS  PubMed  Google Scholar 

  5. Kee BL, Quong MW, Murre C . E2A proteins: essential regulators at multiple stages of B-cell development. Immunol Rev 2000; 175: 138–149.

    Article  CAS  PubMed  Google Scholar 

  6. Nutt SL, Heavey B, Rolink AG, Busslinger M . Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 1999; 401: 556–562.

    Article  CAS  PubMed  Google Scholar 

  7. Mikkola I, Heavey B, Horcher M, Busslinger M . Reversion of B cell commitment upon loss of Pax5 expression. Science 2002; 297: 110–113.

    Article  CAS  PubMed  Google Scholar 

  8. Rolink AG, Nutt SL, Melchers F, Busslinger M . Long-term in vivo reconstitution of T-cell development by Pax5-deficient B-cell progenitors. Nature 1999; 401: 603–606.

    Article  CAS  PubMed  Google Scholar 

  9. Horcher M, Souabni A, Busslinger M . Pax5/BSAP maintains the identity of B cells in late B lymphopoiesis. Immunity 2001; 14: 779–790.

    Article  CAS  PubMed  Google Scholar 

  10. Ikawa T, Kawamoto H, Wright LY, Murre C . Long-term cultured E2A-deficient hematopoietic progenitor cells are pluripotent. Immunity 2004; 20: 349–360.

    Article  CAS  PubMed  Google Scholar 

  11. Xie H, Ye M, Feng R, Graf T . Stepwise reprogramming of B cells into macrophages. Cell 2004; 117: 663–676.

    Article  CAS  PubMed  Google Scholar 

  12. Kuppers R, Rajewsky K . The origin of Hodgkin and Reed/Sternberg cells in Hodgkin′s disease. Annu Rev Immunol 1998; 16: 471–493.

    Article  CAS  PubMed  Google Scholar 

  13. Schwering I, Brauninger A, Klein U, Jungnickel B, Tinguely M, Diehl V et al. Loss of the B-lineage-specific gene expression program in Hodgkin and Reed–Sternberg cells of Hodgkin lymphoma. Blood 2003; 101: 1505–1512.

    Article  CAS  PubMed  Google Scholar 

  14. Jundt F, Kley K, Anagnostopoulos I, Schulze Probsting K, Greiner A, Mathas S et al. Loss of PU.1 expression is associated with defective immunoglobulin transcription in Hodgkin and Reed–Sternberg cells of classical Hodgkin disease. Blood 2002; 99: 3060–3062.

    Article  CAS  PubMed  Google Scholar 

  15. Stein H, Marafioti T, Foss HD, Laumen H, Hummel M, Anagnostopoulos I et al. Down-regulation of BOB.1/OBF.1 and Oct2 in classical Hodgkin disease but not in lymphocyte predominant Hodgkin disease correlates with immunoglobulin transcription. Blood 2001; 97: 496–501.

    Article  CAS  PubMed  Google Scholar 

  16. Hertel CB, Zhou XG, Hamilton-Dutoit SJ, Junker S . Loss of B cell identity correlates with loss of B cell-specific transcription factors in Hodgkin/Reed–Sternberg cells of classical Hodgkin lymphoma. Oncogene 2002; 21: 4908–4920.

    Article  CAS  PubMed  Google Scholar 

  17. Mathas S, Janz M, Hummel F, Hummel M, Wollert-Wulf B, Lusatis S et al. Intrinsic inhibition of transcription factor E2A by HLH proteins ABF-1 and Id2 mediates reprogramming of neoplastic B cells in Hodgkin lymphoma. Nat Immunol 2006; 7: 207–215.

    Article  CAS  PubMed  Google Scholar 

  18. Jundt F, Anagnostopoulos I, Forster R, Mathas S, Stein H, Dorken B . Activated Notch1 signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma. Blood 2002; 99: 3398–3403.

    Article  CAS  PubMed  Google Scholar 

  19. Maillard I, Fang T, Pear WS . Regulation of lymphoid development, differentiation, and function by the Notch pathway. Annu Rev Immunol 2005; 23: 945–974.

    Article  CAS  PubMed  Google Scholar 

  20. Izon DJ, Aster JC, He Y, Weng A, Karnell FG, Patriub V et al. Deltex1 redirects lymphoid progenitors to the B cell lineage by antagonizing Notch1. Immunity 2002; 16: 231–243.

    Article  CAS  PubMed  Google Scholar 

  21. Mukherjee A, Veraksa A, Bauer A, Rosse C, Camonis J, Artavanis-Tsakonas S . Regulation of Notch signalling by non-visual beta-arrestin. Nat Cell Biol 2005; 7: 1191–1201.

    Article  PubMed  Google Scholar 

  22. Radtke F, Wilson A, Mancini SJ, MacDonald HR . Notch regulation of lymphocyte development and function. Nat Immunol 2004; 5: 247–253.

    Article  CAS  PubMed  Google Scholar 

  23. Pui JC, Allman D, Xu L, DeRocco S, Karnell FG, Bakkour S et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 1999; 11: 299–308.

    Article  CAS  PubMed  Google Scholar 

  24. Radtke F, Wilson A, Stark G, Bauer M, van Meerwijk J, MacDonald HR et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 1999; 10: 547–558.

    Article  CAS  PubMed  Google Scholar 

  25. Wilson A, MacDonald HR, Radtke F . Notch 1-deficient common lymphoid precursors adopt a B cell fate in the thymus. J Exp Med 2001; 194: 1003–1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hoflinger S, Kesavan K, Fuxa M, Hutter C, Heavey B, Radtke F et al. Analysis of Notch1 function by in vitro T cell differentiation of Pax5 mutant lymphoid progenitors. J Immunol 2004; 173: 3935–3944.

    Article  PubMed  Google Scholar 

  27. Smith EM, Akerblad P, Kadesch T, Axelson H, Sigvardsson M . Inhibition of EBF function by active Notch signaling reveals a novel regulatory pathway in early B-cell development. Blood 2005; 106: 1995–2001.

    Article  CAS  PubMed  Google Scholar 

  28. Nie L, Xu M, Vladimirova A, Sun XH . Notch-induced E2A ubiquitination and degradation are controlled by MAP kinase activities. Embo J 2003; 22: 5780–5792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Strubin M, Newell JW, Matthias P . OBF-1, a novel B cell-specific coactivator that stimulates immunoglobulin promoter activity through association with octamer-binding proteins. Cell 1995; 80: 497–506.

    Article  CAS  PubMed  Google Scholar 

  30. Gordon MS, Kanegai CM, Doerr JR, Wall R . Somatic hypermutation of the B cell receptor genes B29 (Igbeta, CD79b) and mb1 (Igalpha, CD79a). Proc Natl Acad Sci USA 2003; 100: 4126–4131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D . Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 2002; 295: 868–872.

    Article  CAS  PubMed  Google Scholar 

  32. Sigvardsson M, Akerblad P, Leanderson T . Early B cell factor interacts with a subset of kappa promoters. J Immunol 1996; 156: 3788–3796.

    CAS  PubMed  Google Scholar 

  33. Minter LM, Turley DM, Das P, Shin HM, Joshi I, Lawlor RG et al. Inhibitors of gamma-secretase block in vivo and in vitro T helper type 1 polarization by preventing Notch upregulation of Tbx21. Nat Immunol 2005; 6: 680–688.

    Article  CAS  PubMed  Google Scholar 

  34. Deftos ML, He YW, Ojala EW, Bevan MJ . Correlating notch signaling with thymocyte maturation. Immunity 1998; 9: 777–786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gupta-Rossi N, Storck S, Griebel PJ, Reynaud CA, Weill JC, Dahan A . Specific over-expression of deltex and a new Kelch-like protein in human germinal center B cells. Mol Immunol 2003; 39: 791–799.

    Article  CAS  PubMed  Google Scholar 

  36. Ushmorov A, Leithauser F, Sakk O, Weinhausel A, Popov SW, Moller P et al. Epigenetic processes play a major role in B-cell-specific gene silencing in classical Hodgkin lymphoma. Blood 2006; 107: 2493–2500.

    Article  CAS  PubMed  Google Scholar 

  37. Souabni A, Cobaleda C, Schebesta M, Busslinger M . Pax5 promotes B lymphopoiesis and blocks T cell development by repressing Notch1. Immunity 2002; 17: 781–793.

    Article  CAS  PubMed  Google Scholar 

  38. Atayar C, Poppema S, Blokzijl T, Harms G, Boot M, van den Berg A . Expression of the T-cell transcription factors, GATA-3 and T-bet, in the neoplastic cells of Hodgkin lymphomas. Am J Pathol 2005; 166: 127–134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu WH, Lai MZ . Deltex regulates T-cell activation by targeted degradation of active MEKK1. Mol Cell Biol 2005; 25: 1367–1378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Weng AP, Ferrando AA, Lee W, Morris JPt, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Lucio Miele (Maywood, USA) for siRNA sequences for Notch1 and for critical reading of the manuscript; Hans-Martin Jäck (Erlangen, Germany) for advice and discussions and Katharina Kley, Sylvia Wowro, Sandra Meier and Antje Wollny for excellent technical assistance. This work was supported by grants of the Deutsche Forschungsgemeinschaft (Klinische Forschergruppe KFO 105) and the Wilhelm Sander Stiftung (2003.129.2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Jundt.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jundt, F., Acikgöz, Ö., Kwon, SH. et al. Aberrant expression of Notch1 interferes with the B-lymphoid phenotype of neoplastic B cells in classical Hodgkin lymphoma. Leukemia 22, 1587–1594 (2008). https://doi.org/10.1038/leu.2008.101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.101

Keywords

This article is cited by

Search

Quick links