Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

Amplification at 7q22 targets cyclin-dependent kinase 6 in T-cell lymphoma

Abstract

Recurrent chromosomal aberrations in hematopoietic tumors target genes involved in pathogenesis. Their identification and functional characterization are therefore important for the establishment of rational therapies. Here, we investigated genomic amplification at 7q22 in the T-cell lymphoma cell line SU-DHL-1 belonging to the subtype of anaplastic large-cell lymphoma (ALCL). Cytogenetic analysis mapped this amplicon to 86–95 Mb. Copy-number determination quantified the amplification level at 5- to 6-fold. Expression analysis of genes located within this region identified cyclin-dependent kinase 6 (CDK6) as a potential amplification target. In comparison with control cell lines, SU-DHL-1 expressed considerably higher levels of CDK6. Functionally, SU-DHL-1 cells exhibited reduced sensitivity to rapamycin treatment, as indicated by cell growth and cell cycle analysis. Rapamycin reportedly inhibits degradation of the CDK inhibitor p27 with concomitant downregulation of cyclin D3, implying a proliferative advantage for CDK6 overexpression. Amplification of the CDK6 locus was analyzed in primary T-cell lymphoma samples and, while detected infrequently in those classified as ALCL (1%), was detected in 23% of peripheral T-cell lymphomas not otherwise specified. Taken together, analysis of the 7q22 amplicon identified CDK6 as an important cell cycle regulator in T-cell lymphomas, representing a novel potential target for rational therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R et al. A census of human cancer genes. Nat Rev Cancer 2004; 4: 177–183.

    Article  CAS  Google Scholar 

  2. Gebhart E . Double minutes, cytogenetic equivalents of gene amplification, in human neoplasia—a review. Clin Transl Oncol 2005; 7: 477–485.

    Article  Google Scholar 

  3. Rizvi MA, Evens AM, Tallman MS, Nelson BP, Rosen ST . T-cell non-Hodgkin lymphoma. Blood 2006; 107: 1255–1264.

    Article  CAS  Google Scholar 

  4. Jaffe ES, Harris NL, Stein H, Vardiman JW (eds). World Health Organization Classification of Tumors. Pathology and Genetics of Tumours of Haematopoetic and Lymphoid Tissues. IARC Press: Lyon, 2001.

    Google Scholar 

  5. Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 1994; 263: 1281–1284.

    Article  CAS  Google Scholar 

  6. Piva R, Chiarle R, Manazza AD, Taulli R, Simmons W, Ambrogio C et al. Ablation of oncogenic ALK is a viable therapeutic approach for anaplastic large-cell lymphomas. Blood 2006; 107: 689–697.

    Article  CAS  Google Scholar 

  7. Thompson MA, Stumph J, Henrickson SE, Rosenwald A, Wang Q, Olson S et al. Differential gene expression in anaplastic lymphoma kinase-positive and anaplastic lymphoma kinase-negative anaplastic large cell lymphomas. Hum Pathol 2005; 36: 494–504.

    Article  CAS  Google Scholar 

  8. Rassidakis GZ, Feretzaki M, Atwell C, Grammatikakis I, Lin Q, Lai R et al. Inhibition of Akt increases p27Kip1 levels and induces cell cycle arrest in anaplastic large cell lymphoma. Blood 2005; 105: 827–829.

    Article  CAS  Google Scholar 

  9. Zettl A, Rudiger T, Konrad MA, Chott A, Simonitsch-Klupp I, Sonnen R et al. Genomic profiling of peripheral T-cell lymphoma, unspecified, and anaplastic large T-cell lymphoma delineates novel recurrent chromosomal alterations. Am J Pathol 2004; 164: 1837–1848.

    Article  CAS  Google Scholar 

  10. Malumbres M, Barbacid M . Mammalian cyclin-dependent kinases. Trends Biochem Sci 2005; 30: 630–641.

    Article  CAS  Google Scholar 

  11. Ekholm SV, Reed SI . Regulation of G(1) cyclin-dependent kinases in the mammalian cell cycle. Curr Opin Cell Biol 2000; 12: 676–684.

    Article  CAS  Google Scholar 

  12. MacLeod RA, Kaufmann M, Drexler HG . Cytogenetic harvesting of commonly used tumor cell lines. Nat Protoc 2007; 2: 372–382.

    Article  CAS  Google Scholar 

  13. Haralambieva E, Kleiverda K, Mason DY, Schuuring E, Kluin PM . Detection of three common translocation breakpoints in non-Hodgkin's lymphomas by fluorescence in situ hybridization on routine paraffin-embedded tissue sections. J Pathol 2002; 198: 163–170.

    Article  CAS  Google Scholar 

  14. Leich E, Haralambieva E, Zettl A, Chott A, Rüdiger T, Höller S et al. Tissue microarray-based screening for chromosomal breakpoints affecting the T-cell receptor gene loci in mature T-cell lymphomas. J Pathol 2007; 213: 99–105.

    Article  CAS  Google Scholar 

  15. Nagel S, Scherr M, Quentmeier H, Kaufmann M, Zaborski M, Drexler HG et al. HLXB9 activates IL6 in Hodgkin lymphoma cell lines and is regulated by PI3K signalling involving E2F3. Leukemia 2005; 19: 841–846.

    Article  CAS  Google Scholar 

  16. Nagel S, Burek C, Venturini L, Scherr M, Quentmeier H, Meyer C et al. Comprehensive analysis of homeobox genes in Hodgkin lymphoma cell lines identifies dysregulated expression of HOXB9 mediated via ERK5 signaling and BMI1. Blood 2007; 109: 3015–3023.

    CAS  Google Scholar 

  17. van Doorn R, Zoutman WH, Dijkman R, de Menezes RX, Commandeur S, Mulder AA et al. Epigenetic profiling of cutaneous T-cell lymphoma: promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG, and p73. J Clin Oncol 2005; 23: 3886–3896.

    Article  CAS  Google Scholar 

  18. Merz H, Lange K, Gaiser T, Muller A, Kapp U, Bittner C et al. Characterization of a novel human anaplastic large cell lymphoma cell line tumorigenic in SCID mice. Leuk Lymphoma 2002; 43: 165–172.

    Article  Google Scholar 

  19. Mahony D, Parry DA, Lees E . Active cdk6 complexes are predominantly nuclear and represent only a minority of the cdk6 in T cells. Oncogene 1998; 16: 603–611.

    Article  CAS  Google Scholar 

  20. Veiga-Fernandes H, Rocha B . High expression of active CDK6 in the cytoplasm of CD8 memory cells favors rapid division. Nat Immunol 2004; 5: 31–37.

    Article  CAS  Google Scholar 

  21. Tam SW, Theodoras AM, Shay JW, Draetta GF, Pagano M . Differential expression and regulation of cyclin D1 protein in normal and tumor human cells: association with Cdk4 is required for cyclin D1 function in G1 progression. Oncogene 1994; 9: 2663–2674.

    CAS  Google Scholar 

  22. Chen Q, Lin J, Jinno S, Okayama H . Overexpression of Cdk6-cyclin D3 highly sensitizes cells to physical and chemical transformation. Oncogene 2003; 22: 992–1001.

    Article  CAS  Google Scholar 

  23. Hleb M, Murphy S, Wagner EF, Hanna NN, Sharma N, Park J et al. Evidence for cyclin D3 as a novel target of rapamycin in human T lymphocytes. J Biol Chem 2004; 279: 31948–31955.

    Article  CAS  Google Scholar 

  24. Chilosi M, Doglioni C, Yan Z, Lestani M, Menestrina F, Sorio C et al. Differential expression of cyclin-dependent kinase 6 in cortical thymocytes and T-cell lymphoblastic lymphoma/leukemia. Am J Pathol 1998; 152: 209–217.

    CAS  Google Scholar 

  25. Lien HC, Lin CW, Huang PH, Chang ML, Hsu SM . Expression of cyclin-dependent kinase 6 (cdk6) and frequent loss of CD44 in nasal-nasopharyngeal NK/T-cell lymphomas: comparison with CD56-negative peripheral T-cell lymphomas. Lab Invest 2000; 80: 893–900.

    Article  CAS  Google Scholar 

  26. Garcia JF, Camacho FI, Morente M, Fraga M, Montalban C, Alvaro T et al. Hodgkin and Reed–Sternberg cells harbor alterations in the major tumor suppressor pathways and cell-cycle checkpoints: analyses using tissue microarrays. Blood 2003; 101: 681–689.

    Article  CAS  Google Scholar 

  27. Corcoran MM, Mould SJ, Orchard JA, Ibbotson RE, Chapman RM, Boright AP et al. Dysregulation of cyclin dependent kinase 6 expression in splenic marginal zone lymphoma through chromosome 7q translocations. Oncogene 1999; 18: 6271–6277.

    Article  CAS  Google Scholar 

  28. Hayette S, Tigaud I, Callet-Bauchu E, Ffrench M, Gazzo S, Wahbi K et al. In B-cell chronic lymphocytic leukemias, 7q21 translocations lead to overexpression of the CDK6 gene. Blood 2003; 102: 1549–1550.

    Article  CAS  Google Scholar 

  29. Su XY, Busson M, Della Valle V, Ballerini P, Dastugue N, Talmant P et al. Various types of rearrangements target TLX3 locus in T-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer 2004; 41: 243–249.

    Article  CAS  Google Scholar 

  30. Costello JF, Plass C, Arap W, Chapman VM, Held WA, Berger MS et al. Cyclin-dependent kinase 6 (CDK6) amplification in human gliomas identified using two-dimensional separation of genomic DNA. Cancer Res 1997; 57: 1250–1254.

    CAS  Google Scholar 

  31. Takada H, Imoto I, Tsuda H, Sonoda I, Ichikura T, Mochizuki H et al. Screening of DNA copy-number aberrations in gastric cancer cell lines by array-based comparative genomic hybridization. Cancer Sci 2005; 96: 100–110.

    Article  CAS  Google Scholar 

  32. Timmermann S, Hinds PW, Munger K . Elevated activity of cyclin-dependent kinase 6 in human squamous cell carcinoma lines. Cell Growth Differ 1997; 8: 361–370.

    CAS  Google Scholar 

  33. Turturro F, Frist AY, Arnold MD, Seth P, Pulford K . Biochemical differences between SUDHL-1 and KARPAS 299 cells derived from t(2;5)-positive anaplastic large cell lymphoma are responsible for the different sensitivity to the antiproliferative effect of p27(Kip1). Oncogene 2001; 20: 4466–4475.

    Article  CAS  Google Scholar 

  34. Georgakis GV, Li Y, Rassidakis GZ, Medeiros LJ, Younes A . The HSP90 inhibitor 17-AAG synergizes with doxorubicin and U0126 in anaplastic large cell lymphoma irrespective of ALK expression. Exp Hematol 2006; 34: 1670–1679.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Nagel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagel, S., Leich, E., Quentmeier, H. et al. Amplification at 7q22 targets cyclin-dependent kinase 6 in T-cell lymphoma. Leukemia 22, 387–392 (2008). https://doi.org/10.1038/sj.leu.2405028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2405028

Keywords

This article is cited by

Search

Quick links