Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Genetic complexity of myeloproliferative neoplasms

Abstract

Oncogenic mutations in JAK2 and MPL genes have recently been identified in myeloproliferative neoplasms (MPNs). In addition to these mutations, cytogenetic aberrations are frequently present at diagnosis but their role in the pathogenesis remains unclear. Two models of MPN pathogenesis have recently emerged based on either a single-hit or a multi-hit concept. The first model proposes that the acquisition of JAK2 mutations is the disease-initiating event, causing both the onset of disease phenotype and establishment of clonal hematopoiesis. The second model postulates the existence of ‘pre-JAK2’ mutations that establish clonal hematopoiesis before acquisition of JAK2 mutations and onset of disease phenotype. In this review, the two models have been critically evaluated in the context of the latest findings. At present, neither of the two models can be universally applied to all MPN patients due to their genetic heterogeneity. It is likely that the disease pathogenesis in some patients follows the first, and in other patients, the second model. Thus, the somatic mutations in MPN do not seem to be acquired in a predetermined order as seen in other malignancies, but occur randomly. Furthermore, the role of uniparental disomy in MPN and certain aspects of MPN therapy are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Campbell PJ, Green AR . The myeloproliferative disorders. N Engl J Med 2006; 355: 2452–2466.

    Article  CAS  PubMed  Google Scholar 

  2. Levine RL, Pardanani A, Tefferi A, Gilliland DG . Role of JAK2 in the pathogenesis and therapy of myeloproliferative disorders. Nat Rev 2007; 7: 673–683.

    CAS  Google Scholar 

  3. Randi ML, Stocco F, Rossi C, Tison T, Girolami A . Thrombosis and hemorrhage in thrombocytosis: evaluation of a large cohort of patients (357 cases). J Med 1991; 22: 213–223.

    CAS  PubMed  Google Scholar 

  4. Murphy S . Therapeutic dilemmas: balancing the risks of bleeding, thrombosis, and leukemic transformation in myeloproliferative disorders (MPD). Thromb Haemost 1997; 78: 622–626.

    CAS  PubMed  Google Scholar 

  5. Sterkers Y, Preudhomme C, Lai JL, Demory JL, Caulier MT, Wattel E et al. Acute myeloid leukemia and myelodysplastic syndromes following essential thrombocythemia treated with hydroxyurea: high proportion of cases with 17p deletion. Blood 1998; 91: 616–622.

    CAS  PubMed  Google Scholar 

  6. Shibata K, Shimamoto Y, Suga K, Sano M, Matsuzaki M, Yamaguchi M . Essential thrombocythemia terminating in acute leukemia with minimal myeloid differentiation––a brief review of recent literature. Acta Haematol 1994; 91: 84–88.

    CAS  PubMed  Google Scholar 

  7. Murphy S, Peterson P, Iland H, Laszlo J . Experience of the Polycythemia Vera Study Group with essential thrombocythemia: a final report on diagnostic criteria, survival, and leukemic transition by treatment. Semin Hematol 1997; 34: 29–39.

    CAS  PubMed  Google Scholar 

  8. Vardiman JW, Harris NL, Brunning RD . The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 2002; 100: 2292–2302.

    Article  CAS  PubMed  Google Scholar 

  9. Prchal JF, Axelrad AA . Letter: Bone-marrow responses in polycythemia vera. N Engl J Med 1974; 290: 1382.

    CAS  PubMed  Google Scholar 

  10. Kralovics R, Skoda RC . Molecular pathogenesis of Philadelphia chromosome negative myeloproliferative disorders. Blood Rev 2005; 19: 1–13.

    CAS  PubMed  Google Scholar 

  11. Le Couedic JP, Mitjavila MT, Villeval JL, Feger F, Gobert S, Mayeux P et al. Missense mutation of the erythropoietin receptor is a rare event in human erythroid malignancies. Blood 1996; 87: 1502–1511.

    CAS  PubMed  Google Scholar 

  12. Mirza AM, Correa PN, Axelrad AA . Increased basal and induced tyrosine phosphorylation of the insulin-like growth factor I receptor beta subunit in circulating mononuclear cells of patients with polycythemia vera. Blood 1995; 86: 877–882.

    CAS  PubMed  Google Scholar 

  13. Horikawa Y, Matsumura I, Hashimoto K, Shiraga M, Kosugi S, Tadokoro S et al. Markedly reduced expression of platelet c-mpl receptor in essential thrombocythemia. Blood 1997; 90: 4031–4038.

    CAS  PubMed  Google Scholar 

  14. Shultz LD, Schweitzer PA, Rajan TV, Yi T, Ihle JN, Matthews RJ et al. Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell 1993; 73: 1445–1454.

    CAS  PubMed  Google Scholar 

  15. Asimakopoulos FA, Hinshelwood S, Gilbert JG, Delibrias CC, Gottgens B, Fearon DT et al. The gene encoding hematopoietic cell phosphatase (SHP-1) is structurally and transcriptionally intact in polycythemia vera. Oncogene 1997; 14: 1215–1222.

    CAS  PubMed  Google Scholar 

  16. Andersson P, LeBlanc K, Eriksson BA, Samuelsson J . No evidence for an altered mRNA expression or protein level of haematopoietic cell phosphatase in CD34+ bone marrow progenitor cells or mature peripheral blood cells in polycythaemia vera. Eur J Haematol 1997; 59: 310–317.

    CAS  PubMed  Google Scholar 

  17. Xu MJ, Sui X, Zhao R, Dai C, Krantz SB, Zhao ZJ . PTP-MEG2 is activated in polycythemia vera erythroid progenitor cells and is required for growth and expansion of erythroid cells. Blood 2003; 102: 4354–4360.

    CAS  PubMed  Google Scholar 

  18. Kawada E, Tamura J, Kubota K, Murakami H, Naruse T, Tsuchiya J . Possible involvement of protein kinase C in the aberrant regulation of erythropoiesis in polycythemia vera. Leuk Res 1997; 21: 101–105.

    CAS  PubMed  Google Scholar 

  19. Roder S, Steimle C, Meinhardt G, Pahl HL . STAT3 is constitutively active in some patients with Polycythemia rubra vera. Exp Hematol 2001; 29: 694–702.

    CAS  PubMed  Google Scholar 

  20. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144–1148.

    CAS  PubMed  Google Scholar 

  21. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365: 1054–1061.

    CAS  PubMed  Google Scholar 

  22. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7: 387–397.

    CAS  PubMed  Google Scholar 

  23. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352: 1779–1790.

    Article  CAS  PubMed  Google Scholar 

  24. Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 2007; 356: 459–468.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Levine RL, Loriaux M, Huntly BJ, Loh ML, Beran M, Stoffregen E et al. The JAK2V617F activating mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia, but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia. Blood 2005; 106: 3377–3379.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Scott LM, Campbell PJ, Baxter EJ, Todd T, Stephens P, Edkins S et al. The V617F JAK2 mutation is uncommon in cancers and in myeloid malignancies other than the classic myeloproliferative disorders. Blood 2005; 106: 2920–2921.

    CAS  PubMed  Google Scholar 

  27. Zhao R, Xing S, Li Z, Fu X, Li Q, Krantz SB et al. Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem 2005; 280: 22788–22792.

    CAS  PubMed  Google Scholar 

  28. Jones AV, Kreil S, Zoi K, Waghorn K, Curtis C, Zhang L et al. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood 2005; 106: 2162–2168.

    CAS  PubMed  Google Scholar 

  29. Steensma DP, Dewald GW, Lasho TL, Powell HL, McClure RF, Levine RL et al. The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both ‘atypical’myeloproliferative disorders and myelodysplastic syndromes. Blood 2005; 106: 1207–1209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jelinek J, Oki Y, Gharibyan V, Bueso-Ramos C, Prchal JT, Verstovsek S et al. JAK2 mutation 1849G>T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryocytic leukemia. Blood 2005; 106: 3370–3373.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Pietra D, Li S, Brisci A, Passamonti F, Rumi E, Theocharides A et al. Somatic mutations of JAK2 exon 12 in patients with JAK2 (V617F)-negative myeloproliferative disorders. Blood 2008; 111: 1686–1689.

    CAS  PubMed  Google Scholar 

  32. Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 2006; 3: e270.

    PubMed  PubMed Central  Google Scholar 

  33. Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006; 108: 3472–3476.

    CAS  PubMed  Google Scholar 

  34. Beer PA, Campbell PJ, Scott LM, Bench AJ, Erber WN, Bareford D et al. MPL mutations in myeloproliferative disorders: analysis of the PT-1 cohort. Blood 2008; 112: 141–149.

    CAS  PubMed  Google Scholar 

  35. Vannucchi AM, Antonioli E, Guglielmelli P, Pancrazzi A, Guerini V, Barosi G et al. Characteristics and clinical correlates of MPL 515W>L/K mutation in essential thrombocythemia. Blood 2008; 112: 844–847.

    CAS  PubMed  Google Scholar 

  36. Chaligne R, Tonetti C, Besancenot R, Roy L, Marty C, Mossuz P et al. New mutations of MPL in primitive myelofibrosis: only the MPL W515 mutations promote a G(1)/S-phase transition. Leukemia 2008; 22: 1557–1566.

    CAS  PubMed  Google Scholar 

  37. Wernig G, Mercher T, Okabe R, Levine RL, Lee BH, Gilliland DG . Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood 2006; 107: 4274–4281.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lacout C, Pisani DF, Tulliez M, Gachelin FM, Vainchenker W, Villeval JL . JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood 2006; 108: 1652–1660.

    CAS  PubMed  Google Scholar 

  39. Bumm TG, Elsea C, Corbin AS, Loriaux M, Sherbenou D, Wood L et al. Characterization of murine JAK2V617F-positive myeloproliferative disease. Cancer Res 2006; 66: 11156–11165.

    CAS  PubMed  Google Scholar 

  40. Tiedt R, Hao-Shen H, Sobas MA, Looser R, Dirnhofer S, Schwaller J et al. Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood 2008; 111: 3931–3940.

    CAS  PubMed  Google Scholar 

  41. Xing S, Wanting TH, Zhao W, Ma J, Wang S, Xu X et al. Transgenic expression of JAK2V617F causes myeloproliferative disorders in mice. Blood 2008; 111: 5109–5117.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Shide K, Shimoda HK, Kumano T, Karube K, Kameda T, Takenaka K et al. Development of ET, primary myelofibrosis and PV in mice expressing JAK2 V617F. Leukemia 2008; 22: 87–95.

    CAS  PubMed  Google Scholar 

  43. Pardanani A, Fridley BL, Lasho TL, Gilliland DG, Tefferi A . Host genetic variation contributes to phenotypic diversity in myeloproliferative disorders. Blood 2008; 111: 2785–2789.

    CAS  PubMed  Google Scholar 

  44. Kralovics R, Teo SS, Li S, Theocharides A, Buser AS, Tichelli A et al. Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood 2006; 108: 1377–1380.

    CAS  PubMed  Google Scholar 

  45. Ihle JN, Gilliland DG . Jak2: normal function and role in hematopoietic disorders. Curr Opin Genet Dev 2007; 17: 8–14.

    CAS  PubMed  Google Scholar 

  46. Adamson JW, Fialkow PJ, Murphy S, Prchal JF, Steinmann L . Polycythemia vera: stem-cell and probable clonal origin of the disease. N Engl J Med 1976; 295: 913–916.

    CAS  PubMed  Google Scholar 

  47. Fialkow PJ, Faguet GB, Jacobson RJ, Vaidya K, Murphy S . Evidence that essential thrombocythemia is a clonal disorder with origin in a multipotent stem cell. Blood 1981; 58: 916–918.

    CAS  PubMed  Google Scholar 

  48. El Kassar N, Hetet G, Briere J, Grandchamp B . Clonality analysis of hematopoiesis in essential thrombocythemia: advantages of studying T lymphocytes and platelets. Blood 1997; 89: 128–134.

    CAS  PubMed  Google Scholar 

  49. Anger B, Janssen JW, Schrezenmeier H, Hehlmann R, Heimpel H, Bartram CR . Clonal analysis of chronic myeloproliferative disorders using X-linked DNA polymorphisms. Leukemia 1990; 4: 258–261.

    CAS  PubMed  Google Scholar 

  50. Kreipe H, Jaquet K, Felgner J, Radzun HJ, Parwaresch MR . Clonal granulocytes and bone marrow cells in the cellular phase of agnogenic myeloid metaplasia. Blood 1991; 78: 1814–1817.

    CAS  PubMed  Google Scholar 

  51. Dameshek W . Some speculations on the myeloproliferative syndromes. Blood 1951; 6: 372–375.

    CAS  PubMed  Google Scholar 

  52. Chen GL, Prchal JT . X-linked clonality testing: interpretation and limitations. Blood 2007; 110: 1411–1419.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu Y, Phelan J, Go RC, Prchal JF, Prchal JT . Rapid determination of clonality by detection of two closely-linked X chromosome exonic polymorphisms using allele-specific PCR. J Clin Invest 1997; 99: 1984–1990.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Levine RL, Belisle C, Wadleigh M, Zahrieh D, Lee S, Chagnon P et al. X-inactivation-based clonality analysis and quantitative JAK2V617F assessment reveal a strong association between clonality and JAK2V617F in PV but not ET/MMM, and identifies a subset of JAK2V617F-negative ET and MMM patients with clonal hematopoiesis. Blood 2006; 107: 4139–4141.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Li S, Kralovics R, De Libero G, Theocharides A, Gisslinger H, Skoda RC . Clonal heterogeneity in polycythemia vera patients with JAK2 exon12 and JAK2-V617F mutations. Blood 2008; 111: 3863–3866.

    CAS  PubMed  Google Scholar 

  56. Harrison CN, Gale RE, Machin SJ, Linch DC . A large proportion of patients with a diagnosis of essential thrombocythemia do not have a clonal disorder and may be at lower risk of thrombotic complications. Blood 1999; 93: 417–424.

    CAS  PubMed  Google Scholar 

  57. Liu E, Jelinek J, Pastore YD, Guan Y, Prchal JF, Prchal JT . Discrimination of polycythemias and thrombocytoses by novel, simple, accurate clonality assays and comparison with PRV-1 expression and BFU-E response to erythropoietin. Blood 2003; 101: 3294–3301.

    CAS  PubMed  Google Scholar 

  58. Antonioli E, Guglielmelli P, Pancrazzi A, Bogani C, Verrucci M, Ponziani V et al. Clinical implications of the JAK2 V617F mutation in essential thrombocythemia. Leukemia 2005; 19: 1847–1849.

    CAS  PubMed  Google Scholar 

  59. Kralovics R, Stockton DW, Prchal JT . Clonal hematopoiesis in familial polycythemia vera suggests the involvement of multiple mutational events in the early pathogenesis of the disease. Blood 2003; 102: 3793–3797.

    CAS  PubMed  Google Scholar 

  60. Bellanne-Chantelot C, Chaumarel I, Labopin M, Bellanger F, Barbu V, De Toma C et al. Genetic and clinical implications of the Val617Phe JAK2 mutation in 72 families with myeloproliferative disorders. Blood 2006; 108: 346–352.

    CAS  PubMed  Google Scholar 

  61. Rumi E, Passamonti F, Pietra D, Della Porta MG, Arcaini L, Boggi S et al. JAK2 (V617F) as an acquired somatic mutation and a secondary genetic event associated with disease progression in familial myeloproliferative disorders. Cancer 2006; 107: 2206–2211.

    CAS  PubMed  Google Scholar 

  62. Ding J, Komatsu H, Wakita A, Kato-Uranishi M, Ito M, Satoh A et al. Familial essential thrombocythemia associated with a dominant-positive activating mutation of the c-MPL gene, which encodes for the receptor for thrombopoietin. Blood 2004; 103: 4198–4200.

    CAS  PubMed  Google Scholar 

  63. Landgren O, Goldin LR, Kristinsson SY, Helgadottir EA, Samuelsson J, Bjorkholm M . Increased risks of polycythemia vera, essential thrombocythemia, and myelofibrosis among 24577 first-degree relatives of 11039 patients with myeloproliferative neoplasms in Sweden. Blood 1 May 2008; e-pub ahead of print.

  64. Kralovics R, Guan Y, Prchal JT . Acquired uniparental disomy of chromosome 9p is a frequent stem cell defect in polycythemia vera. Exp Hematol 2002; 30: 229–236.

    CAS  PubMed  Google Scholar 

  65. Rege-Cambrin G, Mecucci C, Tricot G, Michaux JL, Louwagie A, Van Hove W et al. A chromosomal profile of polycythemia vera. Cancer Genet Cytogenet 1987; 25: 233–245.

    CAS  PubMed  Google Scholar 

  66. Diez-Martin JL, Graham DL, Petitt RM, Dewald GW . Chromosome studies in 104 patients with polycythemia vera. Mayo Clin Proc 1991; 66: 287–299.

    CAS  PubMed  Google Scholar 

  67. Mertens F, Johansson B, Heim S, Kristoffersson U, Mitelman F . Karyotypic patterns in chronic myeloproliferative disorders: report on 74 cases and review of the literature. Leukemia 1991; 5: 214–220.

    CAS  PubMed  Google Scholar 

  68. Reilly JT, Snowden JA, Spearing RL, Fitzgerald PM, Jones N, Watmore A et al. Cytogenetic abnormalities and their prognostic significance in idiopathic myelofibrosis: a study of 106 cases. Br J Haematol 1997; 98: 96–102.

    CAS  PubMed  Google Scholar 

  69. Kanfer E, Price CM, Colman SM, Barrett AJ . Erythropoietin-independent colony growth in polycythaemia vera is not restricted to progenitor cells with trisomy of chromosome 8. Br J Haematol 1992; 82: 773–774.

    CAS  PubMed  Google Scholar 

  70. Westwood NB, Gruszka-Westwood AM, Pearson CE, Delord CF, Green AR, Huntly BJ et al. The incidences of trisomy 8, trisomy 9 and D20S108 deletion in polycythaemia vera: an analysis of blood granulocytes using interphase fluorescence in situ hybridization. Br J Haematol 2000; 110: 839–846.

    CAS  PubMed  Google Scholar 

  71. Najfeld V, Montella L, Scalise A, Fruchtman S . Exploring polycythaemia vera with fluorescence in situ hybridization: additional cryptic 9p is the most frequent abnormality detected. Br J Haematol 2002; 119: 558–566.

    PubMed  Google Scholar 

  72. Sinclair EJ, Forrest EC, Reilly JT, Watmore AE, Potter AM . Fluorescence in situ hybridization analysis of 25 cases of idiopathic myelofibrosis and two cases of secondary myelofibrosis: monoallelic loss of RB1, D13S319 and D13S25 loci associated with cytogenetic deletion and translocation involving 13q14. Br J Haematol 2001; 113: 365–368.

    CAS  PubMed  Google Scholar 

  73. Bench AJ, Nacheva EP, Champion KM, Green AR . Molecular genetics and cytogenetics of myeloproliferative disorders. Baillieres Clin Haematol 1998; 11: 819–848.

    CAS  PubMed  Google Scholar 

  74. Gangat N, Strand J, Lasho TL, Finke CM, Knudson RA, Pardanani A et al. Cytogenetic studies at diagnosis in polycythemia vera: clinical and JAK2V617F allele burden correlates. Eur J Haematol 2008; 80: 197–200.

    PubMed  Google Scholar 

  75. Hagstrom SA, Dryja TP . Mitotic recombination map of 13cen-13q14 derived from an investigation of loss of heterozygosity in retinoblastomas. Proc Natl Acad Sci USA 1999; 96: 2952–2957.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhu X, Dunn JM, Goddard AD, Squire JA, Becker A, Phillips RA et al. Mechanisms of loss of heterozygosity in retinoblastoma. Cytogenet Cell Genet 1992; 59: 248–252.

    CAS  PubMed  Google Scholar 

  77. Wadey RB, Pal N, Buckle B, Yeomans E, Pritchard J, Cowell JK . Loss of heterozygosity in Wilms' tumour involves two distinct regions of chromosome 11. Oncogene 1990; 5: 901–907.

    CAS  PubMed  Google Scholar 

  78. Fitzgibbon J, Iqbal S, Davies A, O'Shea D, Carlotti E, Chaplin T et al. Genome-wide detection of recurring sites of uniparental disomy in follicular and transformed follicular lymphoma. Leukemia 2007; 21: 1514–1520.

    CAS  PubMed  Google Scholar 

  79. Fitzgibbon J, Smith LL, Raghavan M, Smith ML, Debernardi S, Skoulakis S et al. Association between acquired uniparental disomy and homozygous gene mutation in acute myeloid leukemias. Cancer Res 2005; 65: 9152–9154.

    CAS  PubMed  Google Scholar 

  80. Griffiths M, Mason J, Rindl M, Akiki S, McMullan D, Stinton V et al. Acquired isodisomy for chromosome 13 is common in AML, and associated with FLT3-itd mutations. Leukemia 2005; 19: 2355–2358.

    CAS  PubMed  Google Scholar 

  81. Raghavan M, Smith LL, Lillington DM, Chaplin T, Kakkas I, Molloy G et al. Segmental uniparental disomy is a commonly acquired genetic event in relapsed acute myeloid leukemia. Blood 2008; 112: 814–821.

    CAS  PubMed  Google Scholar 

  82. Wouters BJ, Sanders MA, Lugthart S, Geertsma-Kleinekoort WM, van Drunen E, Beverloo HB et al. Segmental uniparental disomy as a recurrent mechanism for homozygous CEBPA mutations in acute myeloid leukemia. Leukemia 2007; 21: 2382–2384.

    CAS  PubMed  Google Scholar 

  83. Gupta M, Raghavan M, Gale RE, Chelala C, Allen C, Molloy G et al. Novel regions of acquired uniparental disomy discovered in acute myeloid leukemia. Genes, Chromosomes Cancer 2008; 47: 729–739.

    CAS  PubMed  Google Scholar 

  84. Scott LM, Scott MA, Campbell PJ, Green AR . Progenitors homozygous for the V617F mutation occur in most patients with polycythemia vera, but not essential thrombocythemia. Blood 2006; 108: 2435–2437.

    CAS  PubMed  Google Scholar 

  85. Hickson ID . RecQ helicases: caretakers of the genome. Nat Rev 2003; 3: 169–178.

    CAS  Google Scholar 

  86. Blank A, Bobola MS, Gold B, Varadarajan S, Kolstoe DD, Meade EH et al. The Werner syndrome protein confers resistance to the DNA lesions N3-methyladenine and O6-methylguanine: implications for WRN function. DNA Repair 2004; 3: 629–638.

    CAS  PubMed  Google Scholar 

  87. Davies SL, North PS, Dart A, Lakin ND, Hickson ID . Phosphorylation of the Bloom's syndrome helicase and its role in recovery from S-phase arrest. Mol Cell Biol 2004; 24: 1279–1291.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kralovics R, Teo SS, Buser AS, Brutsche M, Tiedt R, Tichelli A et al. Altered gene expression in myeloproliferative disorders correlates with activation of signaling by the V617F mutation of Jak2. Blood 2005; 106: 3374–3376.

    CAS  PubMed  Google Scholar 

  89. Plo I, Nakatake M, Malivert L, de Villartay JP, Giraudier S, Villeval JL et al. JAK2 stimulates homologous recombination and genetic instability: potential implication in the heterogeneity of myeloproliferative disorders. Blood 2008; 112: 1402–1412.

    CAS  PubMed  Google Scholar 

  90. Yamamoto G, Nannya Y, Kato M, Sanada M, Levine RL, Kawamata N et al. Highly sensitive method for genomewide detection of allelic composition in nonpaired, primary tumor specimens by use of affymetrix single-nucleotide-polymorphism genotyping microarrays. Am J Hum Genet 2007; 81: 114–126.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Lalande M . Parental imprinting and human disease. Annu Rev Genet 1996; 30: 173–195.

    CAS  PubMed  Google Scholar 

  92. Gimelbrant A, Hutchinson JN, Thompson BR, Chess A . Widespread monoallelic expression on human autosomes. Science 2007; 318: 1136–1140.

    CAS  PubMed  Google Scholar 

  93. Sarkar S, Roy BC, Hatano N, Aoyagi T, Gohji K, Kiyama R . A novel ankyrin repeat-containing gene (Kank) located at 9p24 is a growth suppressor of renal cell carcinoma. J Biol Chem 2002; 277: 36585–36591.

    CAS  PubMed  Google Scholar 

  94. Lerer I, Sagi M, Meiner V, Cohen T, Zlotogora J, Abeliovich D . Deletion of the ANKRD15 gene at 9p24.3 causes parent-of-origin-dependent inheritance of familial cerebral palsy. Hum Mol Genet 2005; 14: 3911–3920.

    CAS  PubMed  Google Scholar 

  95. Luedi PP, Dietrich FS, Weidman JR, Bosko JM, Jirtle RL, Hartemink AJ . Computational and experimental identification of novel human imprinted genes. Genome Res 2007; 17: 1723–1730.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Li S, Kralovics R, De Libero G, Theocharides A, Gisslinger H, Skoda RC . Clonal heterogeneity in polycythemia vera patients with JAK2 exon12 and JAK2-V617F mutations. Blood 2008; 111: 3863–3866.

    CAS  PubMed  Google Scholar 

  97. Schaub F, Tiedt R, Herrnouet S, Girodon F, Kralovics R, Tichelli A et al. Characterization of del20q in peripheral blood of MPD patients using copy number analysis and high resolution oligonucleotide CGH array. Blood 2007; 110: 457A–458A.

    Google Scholar 

  98. Gondek LP, Dunbar AJ, Szpurka H, McDevitt MA, Maciejewski JP . SNP array karyotyping allows for the detection of uniparental disomy and cryptic chromosomal abnormalities in MDS/MPD-U and MPD. PLoS ONE 2007; 2: e1225.

    PubMed  PubMed Central  Google Scholar 

  99. Campbell PJ, Baxter EJ, Beer PA, Scott LM, Bench AJ, Huntly BJ et al. Mutation of JAK2 in the myeloproliferative disorders: timing, clonality studies, cytogenetic associations, and role in leukemic transformation. Blood 2006; 108: 3548–3555.

    CAS  PubMed  Google Scholar 

  100. Theocharides A, Boissinot M, Girodon F, Garand R, Teo SS, Lippert E et al. Leukemic blasts in transformed JAK2-V617F-positive myeloproliferative disorders are frequently negative for the JAK2-V617F mutation. Blood 2007; 110: 375–379.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Kralovics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kralovics, R. Genetic complexity of myeloproliferative neoplasms. Leukemia 22, 1841–1848 (2008). https://doi.org/10.1038/leu.2008.233

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.233

Keywords

This article is cited by

Search

Quick links