Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Apoptosis

Arsenic trioxide and proteasome inhibitor bortezomib synergistically induce apoptosis in leukemic cells: the role of protein kinase Cδ

Abstract

Arsenic trioxide (ATO) and proteasome inhibitor bortezomib have been successfully applied to treat acute promyelocytic leukemia (APL) and multiple myeloma (MM), respectively. Their synergistic effects with other anticancer drugs have been widely studied. Here, we investigated the potential synergy of bortezomib and ATO on Bcr-Abl+ leukemic K562 cells. The results showed that cotreatment of bortezomib at 32 nM, a half concentration for growth arrest, and ATO at 1 μ M, a dose with no significant cytotoxic effect, synergistically induced apoptosis in the cell line, followed by enhanced mitochondrial dysfunction, release of cytochrome c and apoptosis-inducing factor, caspase-3 cleavage and degradation of poly-adenosine diphosphate-ribose polymerase together with the decreased Bcr-Abl protein. These two drugs synergistically induced proteolytic activation of protein kinase Cδ (PKCδ) with enhanced activation of two mitogen-activated protein kinases phospho-c-Jun NH2-terminal kinase and p38. The specific PKCδ inhibitor rottlerin markedly decreased bortezomib plus ATO-induced apoptosis, suggesting that PKCδ plays an important role in bortezomib plus ATO-induced apoptosis. Moreover, apoptosis synergy of bortezomib and ATO could also be seen in some kinds of acute leukemic cell lines and primary cells. Totally, our results indicate that combined regimen of bortezomib and ATO might be a potential therapeutic remedy for the treatment of leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Hehlmann R . Current CML therapy: progress and dilemma. Leukemia 2003; 17: 1010–1012.

    Article  CAS  PubMed  Google Scholar 

  2. Calabretta B, Perrotti D . The biology of CML blast crisis. Blood 2004; 103: 4010–4022.

    Article  CAS  PubMed  Google Scholar 

  3. Fernandez-Luna JL . Bcr-Abl and inhibition of apoptosis in chronic myelogenous leukemia cells. Apoptosis 2000; 5: 315–318.

    Article  CAS  PubMed  Google Scholar 

  4. Samali A, Gorman AM, Cotter TG . Role of Bcr-Abl kinase in resistance to apoptosis. Adv Pharmacol 1997; 41: 533–552.

    Article  CAS  PubMed  Google Scholar 

  5. Druker BJ . Inhibition of the Bcr-Abl tyrosine kinase as a therapeutic strategy for CML. Oncogene 2002; 21: 8541–8546.

    Article  CAS  PubMed  Google Scholar 

  6. Hochhaus A, Kreil S, Corbin AS, La Rosee P, Muller MC, Lahaye T et al. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 2002; 16: 2190–2196.

    Article  CAS  PubMed  Google Scholar 

  7. Kovitz C, Kantarjian H, Garcia-Manero G, Abruzzo LV, Cortes J . Myelodysplastic syndromes and acute leukemia developing after imatinib mesylate therapy for chronic myeloid leukemia. Blood 2006; 108: 2811–2813.

    Article  CAS  PubMed  Google Scholar 

  8. Cherrier-De Wilde S, Rack K, Vannuffel P, Delannoy A, Hagemeijer A . Philadelphia-negative acute lymphoblastic leukemia developing in a CML patient in imatinib mesylate-induced complete cytogenetic remission. Leukemia 2003; 17: 2046–2048.

    Article  CAS  PubMed  Google Scholar 

  9. San Miguel J, Blade J, Boccadoro M, Cavenagh J, Glasmacher A, Jagannath S et al. A practical update on the use of bortezomib in the management of multiple myeloma. Oncologist 2006; 11: 51–61.

    Article  CAS  PubMed  Google Scholar 

  10. Cavo M . Proteasome inhibitor bortezomib for the treatment of multiple myeloma. Leukemia 2006; 20: 1341–1352.

    Article  CAS  PubMed  Google Scholar 

  11. Caravita T, de Fabritiis P, Palumbo A, Amadori S, Boccadoro M . Bortezomib: efficacy comparisons in solid tumors and hematologic malignancies. Nat Clin Pract Oncol 2006; 3: 374–387.

    Article  CAS  PubMed  Google Scholar 

  12. Nencioni A, Grunebach F, Patrone F, Ballestrero A, Brossart P . Proteasome inhibitors: antitumor effects and beyond. Leukemia 2007; 21: 30–36.

    Article  CAS  PubMed  Google Scholar 

  13. Cardoso F, Durbecq V, Laes JF, Badran B, Lagneaux L, Bex F et al. Bortezomib (PS-341, Velcade) increases the efficacy of trastuzumab (Herceptin) in HER-2-positive breast cancer cells in a synergistic manner. Mol Cancer Ther 2006; 5: 3042–3051.

    Article  CAS  PubMed  Google Scholar 

  14. Yanamandra N, Colaco NM, Parquet NA, Buzzeo RW, Boulware D, Wright G et al. Tipifarnib and bortezomib are synergistic and overcome cell adhesion-mediated drug resistance in multiple myeloma and acute myeloid leukemia. Clin Cancer Res 2006; 12: 591–599.

    Article  CAS  PubMed  Google Scholar 

  15. Cusack Jr JC, Liu R, Houston M, Abendroth K, Elliott PJ, Adams J et al. Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-kappaB inhibition. Cancer Res 2001; 61: 3535–3540.

    CAS  PubMed  Google Scholar 

  16. Dai Y, Rahmani M, Pei XY, Dent P, Grant S . Bortezomib and flavopiridol interact synergistically to induce apoptosis in chronic myeloid leukemia cells resistant to imatinib mesylate through both Bcr/Abl-dependent and -independent mechanisms. Blood 2004; 104: 509–518.

    Article  CAS  PubMed  Google Scholar 

  17. Yu C, Rahmani M, Conrad D, Subler M, Dent P, Grant S . The proteasome inhibitor bortezomib interacts synergistically with histone deacetylase inhibitors to induce apoptosis in Bcr/Abl+ cells sensitive and resistant to STI571. Blood 2003; 102: 3765–3774.

    Article  CAS  PubMed  Google Scholar 

  18. Shen ZX, Chen GQ, Ni JH, Li XS, Xiong SM, Qiu QY et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood 1997; 89: 3354–3360.

    CAS  PubMed  Google Scholar 

  19. Chen GQ, Zhu J, Shi XG, Ni JH, Zhong HJ, Si GY et al. In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR alpha/PML proteins. Blood 1996; 88: 1052–1061.

    CAS  PubMed  Google Scholar 

  20. Soignet SL . Clinical experience of arsenic trioxide in relapsed acute promyelocytic leukemia. Oncologist 2001; 6 (Suppl 2): 11–16.

    Article  CAS  PubMed  Google Scholar 

  21. Mathews V, George B, Lakshmi KM, Viswabandya A, Bajel A, Balasubramanian P et al. Single-agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: durable remissions with minimal toxicity. Blood 2006; 107: 2627–2632.

    Article  CAS  PubMed  Google Scholar 

  22. Grigg A, Kimber R, Szer J . Prolonged molecular remission after arsenic trioxide and all-trans retinoic acid for acute promyelocytic leukemia relapsed after allogeneic stem cell transplantation. Leukemia 2003; 17: 1916–1917.

    Article  CAS  PubMed  Google Scholar 

  23. Perkins C, Kim CN, Fang G, Bhalla KN . Arsenic induces apoptosis of multidrug-resistant human myeloid leukemia cells that express Bcr-Abl or overexpress MDR, MRP, Bcl-2, or Bcl-x(L). Blood 2000; 95: 1014–1022.

    CAS  PubMed  Google Scholar 

  24. Porosnicu M, Nimmanapalli R, Nguyen D, Worthington E, Perkins C, Bhalla KN . Co-treatment with As2O3 enhances selective cytotoxic effects of STI-571 against Brc-Abl-positive acute leukemia cells. Leukemia 2001; 15: 772–778.

    Article  CAS  PubMed  Google Scholar 

  25. Potin S, Bertoglio J, Breard J . Involvement of a Rho-ROCK-JNK pathway in arsenic trioxide-induced apoptosis in chronic myelogenous leukemia cells. FEBS Lett 2007; 581: 118–124.

    Article  CAS  PubMed  Google Scholar 

  26. Shim MJ, Kim HJ, Yang SJ, Lee IS, Choi HI, Kim T . Arsenic trioxide induces apoptosis in chronic myelogenous leukemia K562 cells: possible involvement of p38 MAP kinase. J Biochem Mol Biol 2002; 35: 377–383.

    CAS  PubMed  Google Scholar 

  27. Zhu XH, Shen YL, Jing YK, Cai X, Jia PM, Huang Y et al. Apoptosis and growth inhibition in malignant lymphocytes after treatment with arsenic trioxide at clinically achievable concentrations. J Natl Cancer Inst 1999; 91: 772–778.

    Article  CAS  PubMed  Google Scholar 

  28. Klotz AV, Stegeman JJ, Walsh C . An alternative 7-ethoxyresorufin O-deethylase activity assay: a continuous visible spectrophotometric method for measurement of cytochrome P-450 monooxygenase activity. Anal Biochem 1984; 140: 138–145.

    Article  CAS  PubMed  Google Scholar 

  29. Song MG, Gao SM, Du KM, Xu M, Yu Y, Zhou YH et al. Nanomolar concentration of NSC606985, a camptothecin analog, induces leukemic-cell apoptosis through protein kinase Cdelta-dependent mechanisms. Blood 2005; 105: 3714–3721.

    Article  CAS  PubMed  Google Scholar 

  30. Ling YH, Liebes L, Zou Y, Perez-Soler R . Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. J Biol Chem 2003; 278: 33714–33723.

    Article  CAS  PubMed  Google Scholar 

  31. Basu A . Involvement of protein kinase C-delta in DNA damage-induced apoptosis. J Cell Mol Med 2003; 7: 341–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Durrant D, Liu J, Yang HS, Lee RM . The bortezomib-induced mitochondrial damage is mediated by accumulation of active protein kinase C-delta. Biochem Biophys Res Commun 2004; 321: 905–908.

    Article  CAS  PubMed  Google Scholar 

  33. Zhao KW, Li D, Zhao Q, Huang Y, Silverman RH, Sims PJ et al. Interferon-alpha-induced expression of phospholipid scramblase 1 through STAT1 requires the sequential activation of protein kinase Cdelta and JNK. J Biol Chem 2005; 280: 42707–42714.

    Article  CAS  PubMed  Google Scholar 

  34. Bedi A, Barber JP, Bedi GC, el-Deiry WS, Sidransky D, Vala MS et al. BCR-ABL-mediated inhibition of apoptosis with delay of G2/M transition after DNA damage: a mechanism of resistance to multiple anticancer agents. Blood 1995; 86: 1148–1158.

    CAS  PubMed  Google Scholar 

  35. Navas TA, Mohindru M, Estes M, Ma JY, Sokol L, Pahanish P et al. Inhibition of overactivated p38 MAPK can restore hematopoiesis in myelodysplastic syndrome progenitors. Blood 2006; 108: 4170–4177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hideshima T, Podar K, Chauhan D, Ishitsuka K, Mitsiades C, Tai YT et al. p38 MAPK inhibition enhances PS-341 (bortezomib)-induced cytotoxicity against multiple myeloma cells. Oncogene 2004; 23: 8766–8776.

    Article  CAS  PubMed  Google Scholar 

  37. Yu C, Rahmani M, Dent P, Grant S . The hierarchical relationship between MAPK signaling and ROS generation in human leukemia cells undergoing apoptosis in response to the proteasome inhibitor Bortezomib. Exp Cell Res 2004; 295: 555–566.

    Article  CAS  PubMed  Google Scholar 

  38. Vink J, Cloos J, Kaspers GJ . Proteasome inhibition as novel treatment strategy in leukaemia. Br J Haematol 2006; 134: 253–262.

    Article  CAS  PubMed  Google Scholar 

  39. Orlowski RZ, Stinchcombe TE, Mitchell BS, Shea TC, Baldwin AS, Stahl S et al. Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol 2002; 20: 4420–4427.

    Article  CAS  PubMed  Google Scholar 

  40. Miller Jr WH, Schipper HM, Lee JS, Singer J, Waxman S . Mechanisms of action of arsenic trioxide. Cancer Res 2002; 62: 3893–3903.

    CAS  PubMed  Google Scholar 

  41. Zhang TD, Chen GQ, Wang ZG, Wang ZY, Chen SJ, Chen Z . Arsenic trioxide, a therapeutic agent for APL. Oncogene 2001; 20: 7146–7153.

    Article  CAS  PubMed  Google Scholar 

  42. Jackson DN, Foster DA . The enigmatic protein kinase Cdelta: complex roles in cell proliferation and survival. FASEB J 2004; 18: 627–636.

    Article  CAS  PubMed  Google Scholar 

  43. Navas TA, Nguyen AN, Hideshima T, Reddy M, Ma JY, Haghnazari E et al. Inhibition of p38alpha MAPK enhances proteasome inhibitor-induced apoptosis of myeloma cells by modulating Hsp27, Bcl-X(L), Mcl-1 and p53 levels in vitro and inhibits tumor growth in vivo. Leukemia 2006; 20: 1017–1027.

    Article  CAS  PubMed  Google Scholar 

  44. Ramos AM, Fernandez C, Amran D, Esteban D, de Blas E, Palacios MA et al. Pharmacologic inhibitors of extracellular signal-regulated kinase (ERKs) and c-Jun NH(2)-terminal kinase (JNK) decrease glutathione content and sensitize human promonocytic leukemia cells to arsenic trioxide-induced apoptosis. J Cell Physiol 2006; 209: 1006–1015.

    Article  CAS  PubMed  Google Scholar 

  45. Kannan-Thulasiraman P, Katsoulidis E, Tallman MS, Arthur JS, Platanias LC . Activation of the mitogen- and stress-activated kinase 1 by arsenic trioxide. J Biol Chem 2006; 281: 22446–22452.

    Article  CAS  PubMed  Google Scholar 

  46. Kang SH, Song JH, Kang HK, Kang JH, Kim SJ, Kang HW et al. Arsenic trioxide-induced apoptosis is independent of stress-responsive signaling pathways but sensitive to inhibition of inducible nitric oxide synthase in HepG2 cells. Exp Mol Med 2003; 35: 83–90.

    Article  CAS  PubMed  Google Scholar 

  47. Di Bacco A, Keeshan K, McKenna SL, Cotter TG . Molecular abnormalities in chronic myeloid leukemia: deregulation of cell growth and apoptosis. Oncologist 2000; 5: 405–415.

    Article  CAS  PubMed  Google Scholar 

  48. Skorski T . BCR/ABL regulates response to DNA damage: the role in resistance to genotoxic treatment and in genomic instability. Oncogene 2002; 21: 8591–8604.

    Article  CAS  PubMed  Google Scholar 

  49. Wang JY . Regulation of cell death by the Abl tyrosine kinase. Oncogene 2000; 19: 5643–5650.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation (30630034), National 973 Program (NO2002CB512805) of China and Grants from Science and Technology Committee of Shanghai (05JC14032, 05QMX1425). Dr GQ Chen is a Chang Jiang Scholar of Ministry of Education of China and is supported by Shanghai Ling-Jun Talent Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G-Q Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, H., Wang, YC., Li, D. et al. Arsenic trioxide and proteasome inhibitor bortezomib synergistically induce apoptosis in leukemic cells: the role of protein kinase Cδ. Leukemia 21, 1488–1495 (2007). https://doi.org/10.1038/sj.leu.2404735

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404735

Keywords

This article is cited by

Search

Quick links