Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular Targets for Therapy

The insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 induces apoptosis in acute myeloid leukemia cells exhibiting autocrine insulin-like growth factor-I secretion

Abstract

Insulin-like growth factor-I (IGF-I) and its receptor (IGF-IR) have been implicated in the pathophysiology of many human cancers, including those of hematopoietic lineage. We investigated the therapeutic potential of the novel IGF-IR tyrosine kinase activity inhibitor, NVP-AEW541, on human acute myeloid leukemia (AML) cells. NVP-AEW541 was tested on a HL60 cell subclone, which is dependent on autocrine secretion of IGF-I for survival and drug resistance, as well as primary drug resistant leukemia cells. NVP-AEW541 treatment (24 h) induced dephosphorylation of IGF-IR. NVP-AEW541 also caused Akt dephosphorylation and changes in the expression of key regulatory proteins of the cell cycle. At longer incubation times (48 h), NVP-AEW541-induced apoptotic cell death, as demonstrated by caspase-3 cleavage. Apoptosis was accompanied by decreased expression of anti-apoptotic proteins. NVP-AEW541 enhanced sensitivity of HL60 cells to either cytarabine or etoposide. Moreover, NVP-AEW541 reduced the clonogenic capacity of AML CD34+ cells cultured in the presence of IGF-I. Chemoresistant AML blasts displayed enhanced IGF-I secretion, and were sensitized to etoposide-induced apoptosis by NVP-AEW541. Our findings indicate that NVP-AEW541 might be a promising therapeutic agent for the treatment of those AML cases characterized by IGF-I autocrine secretion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 3
Figure 2
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Valentinis B, Baserga R . IGF-I receptor signalling in transformation and differentiation. Mol Pathol 2001; 54: 133–137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Miller BS, Yee D . Type I insulin-like growth factor receptor as a therapeutic target in cancer. Cancer Res 2005; 65: 10123–10127.

    Article  CAS  PubMed  Google Scholar 

  3. Yee D . Targeting insulin-like growth factor pathways. Br J Cancer 2006; 94: 465–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kurmasheva RT, Houghton PJ . IGF-I mediated survival pathways in normal and malignant cells. Biochim Biophys Acta 2006; 1766: 1–22.

    CAS  PubMed  Google Scholar 

  5. Yu H, Rohan T . Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst 2000; 92: 1472–1489.

    Article  CAS  PubMed  Google Scholar 

  6. LeRoith D, Roberts Jr CT . The insulin-like growth factor system and cancer. Cancer Lett 2003; 195: 127–137.

    Article  CAS  PubMed  Google Scholar 

  7. Baserga R, Peruzzi F, Reiss K . The IGF-1 receptor in cancer biology. Int J Cancer 2003; 107: 873–877.

    Article  CAS  PubMed  Google Scholar 

  8. Ge NL, Rudikoff S . Insulin-like growth factor I is a dual effector of multiple myeloma cell growth. Blood 2000; 96: 2856–2861.

    CAS  PubMed  Google Scholar 

  9. Hideshima T, Bergsagel PL, Kuehl WM, Anderson KC . Advances in biology of multiple myeloma: clinical applications. Blood 2004; 104: 607–618.

    Article  CAS  PubMed  Google Scholar 

  10. Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Akiyama M et al. Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell 2004; 5: 221–230.

    Article  CAS  PubMed  Google Scholar 

  11. Freund GG, Kulas DT, Way BA, Mooney RA . Functional insulin and insulin-like growth factor-1 receptors are preferentially expressed in multiple myeloma cell lines as compared to B-lymphoblastoid cell lines. Cancer Res 1994; 54: 3179–3185.

    CAS  PubMed  Google Scholar 

  12. Grandage VL, Gale RE, Linch DC, Khwaja A . PI3-kinase/Akt is constitutively active in primary acute myeloid leukaemia cells and regulates survival and chemoresistance via NF-κB, Mapkinase and p53 pathways. Leukemia 2005; 19: 586–594.

    Article  CAS  PubMed  Google Scholar 

  13. Ricciardi MR, McQueen T, Chism D, Milella M, Estey E, Kaldjian E et al. Quantitative single cell determination of ERK phosphorylation and regulation in relapsed and refractory primary acute myeloid leukemia. Leukemia 2005; 19: 1543–1549.

    Article  CAS  PubMed  Google Scholar 

  14. Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, McCubrey JA . JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 2004; 18: 189–218.

    Article  CAS  PubMed  Google Scholar 

  15. Kubota Y, Tanaka T, Ohnishi H, Kitanaka A, Okutani Y, Taminato T et al. Constitutive activation of PI3K is involved in the spontaneous proliferation of primary acute myeloid leukemia cells: direct evidence of PI3K activation. Leukemia 2004; 18: 1438–1440.

    Article  CAS  PubMed  Google Scholar 

  16. Tazzari PL, Cappellini A, Ricci F, Evangelisti C, Papa V, Grafone T et al. Multidrug resistence-associated protein 1 expression is under the control of the phosphoinositide 3 kinase/Akt signal transduction network in human acute myelogenous leukemia blasts. Leukemia 2007, in press.

  17. Neri LM, Borgatti P, Tazzari PL, Bortul R, Cappellini A, Tabellini G et al. The phosphoinositide 3-kinase/Akt 1 pathway involvement in drug and all-trans-retinoic acid resistance of leukemia cells. Mol Cancer Res 2003; 1: 234–246.

    CAS  PubMed  Google Scholar 

  18. Cappellini A, Tabellini G, Zweyer M, Bortul R, Tazzari PL, Billi AM et al. The phosphoinositide 3-kinase/Akt pathway regulates cell cycle progression of HL60 human leukemia cells through cytoplasmic relocalization of the cyclin-dependent kinase inhibitor p27(Kip1) and control of cyclin D1 expression. Leukemia 2003; 17: 2157–2167.

    Article  CAS  PubMed  Google Scholar 

  19. Martelli AM, Tazzari PL, Tabellini G, Bortul R, Billi AM, Manzoli L et al. A new selective AKT pharmacological inhibitor reduces resistance to chemotherapeutic drugs, TRAIL, all-trans-retinoic acid, and ionizing radiation of human leukemia cells. Leukemia 2003; 17: 1794–1805.

    Article  CAS  PubMed  Google Scholar 

  20. Bortul R, Tazzari PL, Cappellini A, Tabellini G, Billi AM, Bareggi R et al. Constitutively active Akt1 protects HL60 leukemia cells from TRAIL-induced apoptosis through a mechanism involving NF-kappaB activation and cFLIP(L) upregulation. Leukemia 2003; 17: 379–389.

    Article  CAS  PubMed  Google Scholar 

  21. Casas S, Ollila J, Aventin A, Vihinen M, Sierra J, Knuutila S . Changes in apoptosis-related pathways in acute myelocytic leukemia. Cancer Genet Cytogenet 2003; 146: 89–101.

    Article  CAS  PubMed  Google Scholar 

  22. Estrov Z, Meir R, Barak Y, Zaizov R, Zadik Z . Human growth hormone and insulin-like growth factor-1 enhance the proliferation of human leukemic blasts. J Clin Oncol 1991; 9: 394–399.

    Article  CAS  PubMed  Google Scholar 

  23. Surmacz E . Growth factor receptors as therapeutic targets: strategies to inhibit the insulin-like growth factor I receptor. Oncogene 2003; 22: 6589–6597.

    Article  CAS  PubMed  Google Scholar 

  24. Burtrum DA, Zhu Z, Lu D, Anderson DM, Prewett M, Pereira DS et al. A fully human monoclonal antibody to the insulin-like growth factor I receptor blocks ligand-dependent signaling and inhibits human tumor growth in vivo. Cancer Res 2003; 63: 8912–8921.

    CAS  PubMed  Google Scholar 

  25. Wu JD, Odman A, Higgins LM, Haugk K, Vessella R, Ludwig DL et al. In vivo effects of the human type I insulin-like growth factor receptor antibody A12 on androgen-dependent and androgen-independent xenograft human prostate tumors. Clin Cancer Res 2005; 11: 3065–3074.

    Article  CAS  PubMed  Google Scholar 

  26. Bertrand FE, Steelman LS, Chappell WH, Abrams SL, Shelton JG, White ER et al. Synergy between an IGF-1R antibody and Raf/MEK/ERK and PI3K/Akt/mTOR pathway inhibitors in suppressing IGF-1R-mediated growth in hematopoietic cells. Leukemia 2006; 20: 1254–1260.

    Article  CAS  PubMed  Google Scholar 

  27. Ullrich A, Gray A, Tam AW, Yang-Feng T, Tsubokawa M, Collins C et al. Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J 1986; 5: 2503–2512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Blum G, Gazit A, Levitzki A . Substrate competitive inhibitors of IGF-1 receptor kinase. Biochemistry 2000; 39: 15705–15712.

    Article  CAS  PubMed  Google Scholar 

  29. Garcia-Echeverria C, Pearson MA, Marti A, Meyer T, Mestan J, Zimmermann J et al. In vivo antitumor activity of NVP-AEW541-A novel, potent, and selective inhibitor of the IGF-IR kinase. Cancer Cell 2004; 5: 231–239.

    Article  CAS  PubMed  Google Scholar 

  30. Bjorndahl M, Cao R, Nissen LJ, Clasper S, Johnson LA, Xue Y et al. Insulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo. Proc Natl Acad Sci USA 2005; 102: 15593–15598.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Neuvians TP, Gashaw I, Hasenfus A, Hacherhacker A, Winterhager E, Grobholz R . Differential expression of IGF components and insulin receptor isoforms in human seminoma versus normal testicular tissue. Neoplasia 2005; 7: 446–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tabellini G, Cappellini A, Tazzari PL, Fala F, Billi AM, Manzoli L et al. Phosphoinositide 3-kinase/Akt involvement in arsenic trioxide resistance of human leukemia cells. J Cell Physiol 2005; 202: 623–634.

    Article  CAS  PubMed  Google Scholar 

  33. Scotlandi K, Manara MC, Nicoletti G, Lollini PL, Lukas S, Benini S et al. Antitumor activity of the insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 in musculoskeletal tumors. Cancer Res 2005; 65: 3868–3876.

    Article  CAS  PubMed  Google Scholar 

  34. Hopfner M, Huether A, Sutter AP, Baradari V, Schuppan D, Scherubl H . Blockade of IGF-1 receptor tyrosine kinase has antineoplastic effects in hepatocellular carcinoma cells. Biochem Pharmacol 2006; 71: 1435–1448.

    Article  PubMed  Google Scholar 

  35. Coutant A, Rescan C, Gilot D, Loyer P, Guguen-Guillouzo C, Baffet G . PI3K-FRAP/mTOR pathway is critical for hepatocyte proliferation whereas MEK/ERK supports both proliferation and survival. Hepatology 2002; 36: 1079–1088.

    Article  CAS  PubMed  Google Scholar 

  36. Noh WC, Mondesire WH, Peng J, Jian W, Zhang H, Dong J et al. Determinants of rapamycin sensitivity in breast cancer cells. Clin Cancer Res 2004; 10: 1013–1023.

    Article  CAS  PubMed  Google Scholar 

  37. Diehl JA, Cheng M, Roussel MF, Sherr CJ . Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 1998; 12: 3499–3511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mulholland DJ, Dedhar S, Wu H, Nelson CC . PTEN and GSK3β: key regulators of progression to androgen-independent prostate cancer. Oncogene 2006; 25: 329–337.

    Article  CAS  PubMed  Google Scholar 

  39. Assoian RK . Stopping and going with p27kip1. Dev Cell 2004; 6: 458–459.

    Article  CAS  PubMed  Google Scholar 

  40. Yang H, Zhang Y, Zhao R, Wen YY, Fournier K, Wu HB et al. Negative cell cycle regulator 14-3-3σ stabilizes p27 Kip1 by inhibiting the activity of PKB/Akt. Oncogene 2006; 25: 4585–4594.

    Article  CAS  PubMed  Google Scholar 

  41. Gotlieb WH, Bruchim I, Gu J, Shi Y, Camirand A, Blouin MJ et al. Insulin-like growth factor receptor I targeting in epithelial ovarian cancer. Gynecol Oncol 2006; 100: 389–396.

    Article  CAS  PubMed  Google Scholar 

  42. Hail Jr N, Carter BZ, Konopleva M, Andreeff M . Apoptosis effector mechanisms: a requiem performed in different keys. Apoptosis 2006; 11: 889–904.

    Article  PubMed  Google Scholar 

  43. Samani AA, Yakar S, Leroith D, Brodt P . The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr Rev 2007, in press.

  44. Liston P, Fong WG, Korneluk RG . The inhibitors of apoptosis: there is more to life than Bcl2. Oncogene 2003; 22: 8568–8580.

    Article  CAS  PubMed  Google Scholar 

  45. Kooijman R . Regulation of apoptosis by insulin-like growth factor (IGF)-I. Cytokine Growth Factor Rev 2006; 17: 305–323.

    Article  CAS  PubMed  Google Scholar 

  46. Martelli AM, Nyakern M, Tabellini G, Bortul R, Tazzari PL, Evangelisti C, Cocco L . Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia. Leukemia 2006; 20: 911–928.

    Article  CAS  PubMed  Google Scholar 

  47. Birkenkamp KU, Geugien M, Schepers H, Westra J, Lemmink HH, Vellenga E . Constitutive NF-κB DNA-binding activity in AML is frequently mediated by a Ras/PI3-K/PKB-dependent pathway. Leukemia 2004; 18: 103–112.

    Article  CAS  PubMed  Google Scholar 

  48. Roboz GJ, Giles FJ, List AF, Cortes JE, Carlin R, Kowalski M . Phase 1 study of PTK787/ZK 222584, a small molecule tyrosine kinase receptor inhibitor, for the treatment of acute myeloid leukemia and myelodysplastic syndrome. Leukemia 2006; 20: 952–957.

    Article  CAS  PubMed  Google Scholar 

  49. Karajannis MA, Vincent L, Direnzo R, Shmelkov SV, Zhang F, Feldman EJ . Activation of FGFR1β signaling pathway promotes survival, migration and resistance to chemotherapy in acute myeloid leukemia cells. Leukemia 2006; 20: 979–986.

    Article  CAS  PubMed  Google Scholar 

  50. Abe S, Funato T, Takahashi S, Yokoyama H, Yamamoto J, Tomiya Y et al. Increased expression of insulin-like growth factor I is associated with Ara-C resistance in leukemia. Tohoku J Exp Med 2006; 209: 217–228.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from: Fondazione CARISBO, Associazione Italiana Ricerca sul Cancro (AIRC Regional grants), Italian MUR PRIN 2005. JAM was supported by the USA Public Health Service (RO1098195).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A M Martelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tazzari, P., Tabellini, G., Bortul, R. et al. The insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 induces apoptosis in acute myeloid leukemia cells exhibiting autocrine insulin-like growth factor-I secretion. Leukemia 21, 886–896 (2007). https://doi.org/10.1038/sj.leu.2404643

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404643

Keywords

This article is cited by

Search

Quick links