Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Immunology

Zoledronic acid inhibits the function of Toll-like receptor 4 ligand activated monocyte-derived dendritic cells

Abstract

Zoledronic acid (ZA) is a nitrogen-containing bisphosphonate with antitumor activity used to treat patients with malignant diseases. ZA treatment induces, as a side effect, inflammatory responses, which are accompanied by expansion of γδ T cells. In our study, we analyzed the function and differentiation of monocyte-derived immature and lipopolysaccharide (LPS)-stimulated dendritic cells (moDCs) treated with different ZA concentrations, which are achieved in patients. We found that moDC activation with TLR4 ligand LPS is modulated by ZA. The expression of maturation markers was diminished with increasing ZA levels upon LPS activation. The migratory capacity, interleukin-12 secretion and generation of cytotoxic- T-cell responses were reduced at higher ZA levels. Increasing ZA concentrations downregulated nuclear factor-κB family members and interferon-regulatory factor (IRF)-3. Surprisingly, in immature moDCs, low ZA concentrations caused upregulation of RelB, c-Rel, IRF-3 and IRF-8. We conclude that ZA concentrations used to treat patients have inhibitory effects on DC activation. This might lead to immunosuppression or result in infectious complications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Clezardin P . Anti-tumour activity of zoledronic acid. Cancer Treat Rev 2005; 31: 1–8.

    Article  Google Scholar 

  2. Clezardin P, Ebetino FH, Fournier PG . Bisphosphonates and cancer-induced bone disease: beyond their antiresorptive activity. Cancer Res 2005; 65: 4971–4974.

    Article  CAS  Google Scholar 

  3. Mundy GR . Bisphosphonates as anticancer drugs. Expert Opin Investig Drugs 1999; 8: 2009–2015.

    Article  CAS  Google Scholar 

  4. Rogers MJ . New insights into the molecular mechanisms of action of bisphosphonates. Curr Pharm Des 2003; 9: 2643–2658.

    Article  CAS  Google Scholar 

  5. Pataki A, Muller K, Green JR, Ma YF, Li QN, Jee WS . Effects of short-term treatment with the bisphosphonates zoledronate and pamidronate on rat bone: a comparative histomorphometric study on the cancellous bone formed before, during, and after treatment. Anat Rec 1997; 249: 458–468.

    Article  CAS  Google Scholar 

  6. Dicuonzo G, Vincenzi B, Santini D, Avvisati G, Rocci L, Battistoni F, Gavasci M et al. Fever after zoledronic acid administration is due to increase in TNF-alpha and IL-6. J Interferon Cytokine Res 2003; 23: 649–654.

    Article  CAS  Google Scholar 

  7. Bertho N, Adamski H, Toujas L, Debove M, Davoust J, Quillien V . Efficient migration of dendritic cells toward lymph node chemokines and induction of T(H)1 responses require maturation stimulus and apoptotic cell interaction. Blood 2005; 106: 1734–1741.

    Article  CAS  Google Scholar 

  8. Stoitzner P, Zanella M, Ortner U, Lukas M, Tagwerker A, Janke K et al. Migration of langerhans cells and dermal dendritic cells in skin organ cultures: augmentation by TNF-alpha and IL-1beta. J Leukoc Biol 1999; 66: 462–470.

    Article  CAS  Google Scholar 

  9. Devilder MC, Maillet S, Bouyge-Moreau I, Donnadieu E, Bonneville M, Scotet E . Potentiation of antigen-stimulated V gamma 9V delta 2T cell cytokine production by immature dendritic cells (DC) and reciprocal effect on DC maturation. J Immunol 2006; 176: 1386–1393.

    Article  CAS  Google Scholar 

  10. Kunzmann V, Bauer E, Feurle J, Weissinger F, Tony HP, Wilhelm M . Stimulation of gammadelta T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 2000; 96: 384–392.

    CAS  Google Scholar 

  11. Reis e Sousa. Activation of dendritic cells: translating innate into adaptive immunity. Curr Opin Immunol 2004; 16: 21–25.

    Article  CAS  Google Scholar 

  12. Re F, Strominger JL . Heterogeneity of TLR-induced responses in dendritic cells: from innate to adaptive immunity. Immunobiology 2004; 209: 191–198.

    Article  CAS  Google Scholar 

  13. Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F . Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 1999; 274: 10689–10692.

    Article  CAS  Google Scholar 

  14. Appel S, Bringmann A, Grunebach F, Weck MM, Bauer J, Brossart P . Epithelial specific transcription factor ESE-3 is involved in the development of monocyte derived DC. Blood 2005; 107: 3265–3270.

    Article  Google Scholar 

  15. Appel S, Mirakaj V, Bringmann A, Weck MM, Grunebach F, Brossart P . PPAR-gamma agonists inhibit toll-like receptor-mediated activation of dendritic cells via the MAP kinase and NF-kappaB pathways. Blood 2005; 106: 3888–3894.

    Article  CAS  Google Scholar 

  16. Nencioni A, Lauber K, Grunebach F, Brugger W, Denzlinger C, Wesselborg S et al. Cyclopentenone prostaglandins induce caspase activation and apoptosis in dendritic cells by a PPAR-gamma-independent mechanism: regulation by inflammatory and T cell-derived stimuli. Exp Hematol 2002; 30: 1020–1028.

    Article  CAS  Google Scholar 

  17. Nencioni A, Grunebach F, Zobywlaski A, Denzlinger C, Brugger W, Brossart P . Dendritic cell immunogenicity is regulated by peroxisome proliferator-activated receptor gamma. J Immunol 2002; 169: 1228–1235.

    Article  CAS  Google Scholar 

  18. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18: 767–811.

    Article  CAS  Google Scholar 

  19. Geijtenbeek TB, Torensma R, van Vliet SJ, van Duijnhoven GC, Adema GJ, van Kooyk Y et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 2000; 100: 575–585.

    Article  CAS  Google Scholar 

  20. Chuah C, Barnes DJ, Kwok M, Corbin A, Deininger MW, Druker BJ et al. Zoledronate inhibits proliferation and induces apoptosis of imatinib-resistant chronic myeloid leukaemia cells. Leukemia 2005; 19: 1896–1904.

    Article  CAS  Google Scholar 

  21. Miyake K . Innate recognition of lipopolysaccharide by Toll-like receptor 4-MD-2. Trends Microbiol 2004; 12: 186–192.

    Article  CAS  Google Scholar 

  22. Ardeshna KM, Pizzey AR, Devereux S, Khwaja A . The PI3 kinase, p38 SAP kinase, and NF-kappaB signal transduction pathways are involved in the survival and maturation of lipopolysaccharide-stimulated human monocyte-derived dendritic cells. Blood 2000; 96: 1039–1046.

    CAS  Google Scholar 

  23. Franchi L, Condo I, Tomassini B, Nicolo C, Testi R . A caspaselike activity is triggered by LPS and is required for survival of human dendritic cells. Blood 2003; 102: 2910–2915.

    Article  CAS  Google Scholar 

  24. Xie J, Qian J, Wang S, Freeman III ME, Epstein J, Yi Q . Novel and detrimental effects of lipopolysaccharide on in vitro generation of immature dendritic cells: involvement of mitogen-activated protein kinase p38. J Immunol 2003; 171: 4792–4800.

    Article  CAS  Google Scholar 

  25. Beutler B . Inferences, questions and possibilities in Toll-like receptor signalling. Nature 2004; 430: 257–263.

    Article  CAS  Google Scholar 

  26. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998; 282: 2085–2088.

    Article  CAS  Google Scholar 

  27. Nakahara T, Uchi H, Urabe K, Chen Q, Furue M, Moroi Y . Role of c-Jun N-terminal kinase on lipopolysaccharide induced maturation of human monocyte-derived dendritic cells. Int Immunol 2004; 16: 1701–1709.

    Article  CAS  Google Scholar 

  28. Akira S . Mammalian Toll-like receptors. Curr Opin Immunol 2003; 15: 5–11.

    Article  CAS  Google Scholar 

  29. Akira S, Takeda K . Toll-like receptor signalling. Nat Rev Immunol 2004; 4: 499–511.

    Article  CAS  Google Scholar 

  30. Horng T, Barton GM, Medzhitov R . TIRAP: an adapter molecule in the Toll signaling pathway. Nat Immunol 2001; 2: 835–841.

    Article  CAS  Google Scholar 

  31. Burkly L, Hession C, Ogata L, Reilly C, Marconi LA, Olson D et al. Expression of relB is required for the development of thymic medulla and dendritic cells. Nature 1995; 373: 531–536.

    Article  CAS  Google Scholar 

  32. Navarro L, David M . p38-dependent activation of interferon regulatory factor 3 by lipopolysaccharide. J Biol Chem 1999; 274: 35535–35538.

    Article  CAS  Google Scholar 

  33. Rescigno M, Martino M, Sutherland CL, Gold MR, Ricciardi-Castagnoli P . Dendritic cell survival and maturation are regulated by different signaling pathways. J Exp Med 1998; 188: 2175–2180.

    Article  CAS  Google Scholar 

  34. Sakaguchi S, Negishi H, Asagiri M, Nakajima C, Mizutani T, Takaoka A et al. Essential role of IRF-3 in lipopolysaccharide-induced interferon-beta gene expression and endotoxin shock. Biochem Biophys Res Commun 2003; 306: 860–866.

    Article  CAS  Google Scholar 

  35. Tamura T, Thotakura P, Tanaka TS, Ko MS, Ozato K . Identification of target genes and a unique cis element regulated by IRF-8 in developing macrophages. Blood 2005; 106: 1938–1947.

    Article  CAS  Google Scholar 

  36. Tsujimura H, Tamura T, Ozato K . Cutting edge: IFN consensus sequence binding protein/IFN regulatory factor 8 drives the development of type I IFN-producing plasmacytoid dendritic cells. J Immunol 2003; 170: 1131–1135.

    Article  CAS  Google Scholar 

  37. Schiavoni G, Mattei F, Borghi P, Sestili P, Venditti M, Morse III HC et al. ICSBP is critically involved in the normal development and trafficking of Langerhans cells and dermal dendritic cells. Blood 2004; 103: 2221–2228.

    Article  CAS  Google Scholar 

  38. Gautier G, Humbert M, Deauvieau F, Scuiller M, Hiscott J, Bates EE et al. A type I interferon autocrine-paracrine loop is involved in Toll-like receptor-induced interleukin-12p70 secretion by dendritic cells. J Exp Med 2005; 201: 1435–1446.

    Article  CAS  Google Scholar 

  39. Loscher CE, Draper E, Leavy O, Kelleher D, Mills KH, Roche HM . Conjugated linoleic acid suppresses NF-kappa B activation and IL-12 production in dendritic cells through ERK-mediated IL-10 induction. J Immunol 2005; 175: 4990–4998.

    Article  CAS  Google Scholar 

  40. Xia CQ, Peng R, Beato F, Clare-Salzler MJ . Dexamethasone induces IL-10-producing monocyte-derived dendritic cells with durable immaturity. Scand J Immunol 2005; 62: 45–54.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from Deutsche Forschungsgemeinschaft (SFB685).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Brossart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bringmann, A., Schmidt, S., Weck, M. et al. Zoledronic acid inhibits the function of Toll-like receptor 4 ligand activated monocyte-derived dendritic cells. Leukemia 21, 732–738 (2007). https://doi.org/10.1038/sj.leu.2404556

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404556

Keywords

This article is cited by

Search

Quick links