Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Lymphoma

Insights into the multistep transformation process of lymphomas: IgH-associated translocations and tumor suppressor gene mutations in clonally related composite Hodgkin's and non-Hodgkin's lymphomas

Abstract

Clonally related composite lymphomas of Hodgkin's lymphoma (HL) and Non-Hodgkin's lymphoma (NHL) represent models to study the multistep transformation process in tumorigenesis and the development of two distinct tumors from a shared precursor. We analyzed six such lymphomas for transforming events. The HLs were combined in two cases with follicular lymphoma (FL), and in one case each with B-cell chronic lymphocytic leukemia, splenic marginal zone lymphoma, mantle cell lymphoma (MCL) and diffuse large B-cell lymphoma (DLBCL). In the HL/FL and HL/MCL combinations, BCL2/IGH and CCND1/IGH translocations, respectively, were detected in both the HL and NHL. No mutations were found in the tumor suppressor genes FAS, NFKBIA and ATM. The HL/DLBCL case harbored clonal replacement mutations of the TP53 gene on both alleles exclusively in the DLBCL. In conclusion, we present the first examples of molecularly verified IgH-associated translocations in HL, which also show that BCL2/IGH or CCND1/IGH translocations can represent early steps in the pathogenesis of composite HL/FL or HL/MCL. The restriction of the TP53 mutations to the DLBCL in the HL/DLBCL case exemplifies a late transforming event that presumably happened in the germinal center and affected the fate of a common lymphoma precursor cell towards development of a DLBCL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Rosenquist R, Menestrina F, Lestani M, Küppers R, Hansmann ML, Bräuninger A . Indications for peripheral light-chain revision and somatic hypermutation without a functional B-cell receptor in precursors of a composite diffuse large B-cell and Hodgkin's lymphoma. Lab Invest 2004; 84: 253–262.

    Article  CAS  Google Scholar 

  2. Rosenquist R, Roos G, Erlanson M, Küppers R, Bräuninger A, Hansmann ML . Clonally related splenic marginal zone lymphoma and Hodgkin lymphoma with unmutated V gene rearrangements and a 15-yr time gap between diagnoses. Eur J Haematol 2004; 73: 210–214.

    Article  Google Scholar 

  3. Tinguely M, Rosenquist R, Sundstrom C, Amini RM, Küppers R, Hansmann ML et al. Analysis of a clonally related mantle cell and Hodgkin lymphoma indicates Epstein–Barr virus infection of a Hodgkin/Reed-Sternberg cell precursor in a germinal center. Am J Surg Pathol 2003; 27: 1483–1488.

    Article  Google Scholar 

  4. van den Berg A, Maggio E, Rust R, Kooistra K, Diepstra A, Poppema S . Clonal relation in a case of CLL, ALCL, and Hodgkin composite lymphoma. Blood 2002; 100: 1425–1429.

    CAS  PubMed  Google Scholar 

  5. Küppers R, Sousa AB, Baur AS, Strickler JG, Rajewsky K, Hansmann ML . Common germinal-center B-cell origin of the malignant cells in two composite lymphomas, involving classical Hodgkin's disease and either follicular lymphoma or B-CLL. Mol Med 2001; 7: 285–292.

    Article  Google Scholar 

  6. Marafioti T, Hummel M, Anagnostopoulos I, Foss HD, Huhn D, Stein H . Classical Hodgkin's disease and follicular lymphoma originating from the same germinal center B cell. J Clin Oncol 1999; 17: 3804–3809.

    Article  CAS  Google Scholar 

  7. Bräuninger A, Hansmann ML, Strickler JG, Dummer R, Burg G, Rajewsky K et al. Identification of common germinal-center B-cell precursors in two patients with both Hodgkin's disease and non-Hodgkin's lymphoma. N Engl J Med 1999; 340: 1239–1247.

    Article  Google Scholar 

  8. Küppers R, Zhao M, Hansmann ML, Rajewsky K . Tracing B cell development in human germinal centres by molecular analysis of single cells picked from histological sections. EMBO J 1993; 12: 4955–4967.

    Article  Google Scholar 

  9. Küppers R . B cells under influence: transformation of B cells by Epstein–Barr virus. Nat Rev Immunol 2003; 3: 801–812.

    Article  Google Scholar 

  10. Jungnickel B, Staratschek-Jox A, Bräuninger A, Spieker T, Wolf J, Diehl V et al. Clonal deleterious mutations in the IkappaBalpha gene in the malignant cells in Hodgkin's lymphoma. J Exp Med 2000; 191: 395–402.

    Article  CAS  Google Scholar 

  11. Cabannes E, Khan G, Aillet F, Jarrett RF, Hay RT . Mutations in the IkBa gene in Hodgkin's disease suggest a tumour suppressor role for IkappaBalpha. Oncogene 1999; 18: 3063–3070.

    Article  CAS  Google Scholar 

  12. Emmerich F, Meiser M, Hummel M, Demel G, Foss HD, Jundt F et al. Overexpression of I kappa B alpha without inhibition of NF-kappaB activity and mutations in the I kappa B alpha gene in Reed-Sternberg cells. Blood 1999; 94: 3129–3134.

    CAS  PubMed  Google Scholar 

  13. Barth TF, Martin-Subero JI, Joos S, Menz CK, Hasel C, Mechtersheimer G et al. Gains of 2p involving the REL locus correlate with nuclear c-Rel protein accumulation in neoplastic cells of classical Hodgkin lymphoma. Blood 2003; 101: 3681–3686.

    Article  CAS  Google Scholar 

  14. Bargou RC, Emmerich F, Krappmann D, Bommert K, Mapara MY, Arnold W et al. Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin's disease tumor cells. J Clin Invest 1997; 100: 2961–2969.

    Article  CAS  Google Scholar 

  15. Montesinos-Rongen M, Roers A, Küppers R, Rajewsky K, Hansmann ML . Mutation of the p53 gene is not a typical feature of Hodgkin and Reed-Sternberg cells in Hodgkin's disease. Blood 1999; 94: 1755–1760.

    CAS  PubMed  Google Scholar 

  16. Maggio EM, van den Berg A, de Jong D, Diepstra A, Poppema S . Low frequency of FAS mutations in Reed-Sternberg cells of Hodgkin's lymphoma. Am J Pathol 2003; 162: 29–35.

    Article  CAS  Google Scholar 

  17. Maggio EM, Stekelenburg E, van den Berg A, Poppema S . TP53 gene mutations in Hodgkin lymphoma are infrequent and not associated with absence of Epstein–Barr virus. Int J Cancer 2001; 94: 60–66.

    Article  CAS  Google Scholar 

  18. Müschen M, Re D, Bräuninger A, Wolf J, Hansmann ML, Diehl V et al. Somatic mutations of the CD95 gene in Hodgkin and Reed-Sternberg cells. Cancer Res 2000; 60: 5640–5643.

    PubMed  Google Scholar 

  19. Gravel S, Delsol G, Al Saati T . Single-cell analysis of the t(14;18)(q32;q21) chromosomal translocation in Hodgkin's disease demonstrates the absence of this translocation in neoplastic Hodgkin and Reed-Sternberg cells. Blood 1998; 91: 2866–2874.

    CAS  PubMed  Google Scholar 

  20. Miura I, Tamura A, Taniwaki M, Nakamura S, Nakamine H, Yoshino T et al. Detection of t(14; 18)(q32;q21) in hyperdiploid cells by fluorescence in situ hybridization in a patient with Hodgkin disease. Cancer Genet Cytogenet 2000; 123: 97–101.

    Article  CAS  Google Scholar 

  21. Liberzon E, Avigad S, Yaniv I, Stark B, Avrahami G, Goshen Y et al. Molecular variants of the ATM gene in Hodgkin's disease in children. Br J Cancer 2004; 90: 522–525.

    Article  CAS  Google Scholar 

  22. Takagi M, Tsuchida R, Oguchi K, Shigeta T, Nakada S, Shimizu K et al. Identification and characterization of polymorphic variations of the ataxia telangiectasia mutated (ATM) gene in childhood Hodgkin disease. Blood 2004; 103: 283–290.

    Article  CAS  Google Scholar 

  23. Willis TG, Dyer MJ . The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood 2000; 96: 808–822.

    CAS  PubMed  Google Scholar 

  24. Gaidano G, Ballerini P, Gong JZ, Inghirami G, Neri A, Newcomb EW et al. p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc Natl Acad Sci USA 1991; 88: 5413–5417.

    Article  CAS  Google Scholar 

  25. Volpe G, Vitolo U, Carbone A, Pastore C, Bertini M, Botto B et al. Molecular heterogeneity of B-lineage diffuse large cell lymphoma. Genes Chromosomes Cancer 1996; 16: 21–30.

    Article  CAS  Google Scholar 

  26. Gronbaek K, Straten PT, Ralfkiaer E, Ahrenkiel V, Andersen MK, Hansen NE et al. Somatic Fas mutations in non-Hodgkin's lymphoma: association with extranodal disease and autoimmunity. Blood 1998; 92: 3018–3024.

    CAS  Google Scholar 

  27. Greiner TC, Moynihan MJ, Chan WC, Lytle DM, Pedersen A, Anderson JR et al. p53 mutations in mantle cell lymphoma are associated with variant cytology and predict a poor prognosis. Blood 1996; 87: 4302–4310.

    CAS  PubMed  Google Scholar 

  28. Gumy-Pause F, Wacker P, Sappino AP . ATM gene and lymphoid malignancies. Leukemia 2004; 18: 238–242.

    Article  CAS  Google Scholar 

  29. Stankovic T, Stewart GS, Byrd P, Fegan C, Moss PA, Taylor AM . ATM mutations in sporadic lymphoid tumours. Leuk Lymphoma 2002; 43: 1563–1571.

    Article  CAS  Google Scholar 

  30. Noppe SM, Heirman C, Bakkus MH, Brissinck J, Schots R, Thielemans K . The genetic variability of the VH genes in follicular lymphoma: the impact of the hypermutation mechanism. Br J Haematol 1999; 107: 625–640.

    Article  CAS  Google Scholar 

  31. Liu J, Johnson RM, Traweek ST . Rearrangement of the BCL-2 gene in follicular lymphoma. Detection by PCR in both fresh and fixed tissue samples. Diagn Mol Pathol 1993; 2: 241–247.

    Article  CAS  Google Scholar 

  32. Graninger WB, Seto M, Boutain B, Goldman P, Korsmeyer SJ . Expression of Bcl-2 and Bcl-2-Ig fusion transcripts in normal and neoplastic cells. J Clin Invest 1987; 80: 1512–1515.

    Article  CAS  Google Scholar 

  33. Zoldan MC, Inghirami G, Masuda Y, Vandekerckhove F, Raphael B, Amorosi E et al. Large-cell variants of mantle cell lymphoma: cytologic characteristics and p53 anomalies may predict poor outcome. Br J Haematol 1996; 93: 475–486.

    Article  CAS  Google Scholar 

  34. Villuendas R, Pezzella F, Gatter K, Algara P, Sanchez-Beato M, Martinez P et al. p21WAF1/CIP1 and MDM2 expression in non-Hodgkin's lymphoma and their relationship to p53 status: a p53+, MDM2-, p21-immunophenotype associated with missense p53 mutations. J Pathol 1997; 181: 51–61.

    Article  CAS  Google Scholar 

  35. Nadel B, Marculescu R, Le T, Rudnicki M, Böcskör S, Jäger U . Novel insights into the mechanism of t(14;18)(q32;q21) translocation in follicular lymphoma. Leuk Lymphoma 2001; 42: 1181–1194.

    Article  CAS  Google Scholar 

  36. Torlakovic E, Tierens A, Dang HD, Delabie J . The transcription factor PU.1, necessary for B-cell development is expressed in lymphocyte predominance, but not classical Hodgkin's disease. Am J Pathol 2001; 159: 1807–1814.

    Article  CAS  Google Scholar 

  37. Re D, Müschen M, Ahmadi T, Wickenhauser C, Staratschek-Jox A, Holtick U et al. Oct-2 and Bob-1 deficiency in Hodgkin and Reed Sternberg cells. Cancer Res 2001; 61: 2080–2084.

    CAS  PubMed  Google Scholar 

  38. Stein H, Marafioti T, Foss HD, Laumen H, Hummel M, Anagnostopoulos I et al. Down-regulation of BOB.1/OBF.1 and Oct2 in classical Hodgkin disease but not in lymphocyte predominant Hodgkin disease correlates with immunoglobulin transcription. Blood 2001; 97: 496–501.

    Article  CAS  Google Scholar 

  39. Schwering I, Bräuninger A, Klein U, Jungnickel B, Tinguely M, Diehl V et al. Loss of the B-lineage-specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 2003; 101: 1505–1512.

    Article  CAS  Google Scholar 

  40. Hell K, Lorenzen J, Fischer R, Hansmann ML . Hodgkin cells accumulate mRNA for bcl-2. Lab Invest 1995; 73: 492–496.

    CAS  PubMed  Google Scholar 

  41. Liu YJ, Mason DY, Johnson GD, Abbot S, Gregory CD, Hardie DL et al. Germinal center cells express bcl-2 protein after activation by signals which prevent their entry into apoptosis. Eur J Immunol 1991; 21: 1905–1910.

    Article  CAS  Google Scholar 

  42. Garcia JF, Camacho FI, Morente M, Fraga M, Montalban C, Alvaro T et al. Hodgkin and Reed-Sternberg cells harbor alterations in the major tumor suppressor pathways and cell-cycle checkpoints: analyses using tissue microarrays. Blood 2003; 101: 681–689.

    Article  CAS  Google Scholar 

  43. Tzankov A, Zimpfer A, Lugli A, Krugmann J, Went P, Schraml P et al. High-throughput tissue microarray analysis of G1-cyclin alterations in classical Hodgkin's lymphoma indicates overexpression of cyclin E1. J Pathol 2003; 199: 201–207.

    Article  CAS  Google Scholar 

  44. Geng Y, Whoriskey W, Park MY, Bronson RT, Medema RH, Li T et al. Rescue of cyclin D1 deficiency by knockin cyclin E. Cell 1999; 97: 767–777.

    Article  CAS  Google Scholar 

  45. Müschen M, Rajewsky K, Krönke M, Küppers R . The origin of CD95-gene mutations in B-cell lymphoma. Trends Immunol 2002; 23: 75–80.

    Article  Google Scholar 

  46. Koduru PR, Raju K, Vadmal V, Menezes G, Shah S, Susin M et al. Correlation between mutation in P53, p53 expression, cytogenetics, histologic type, and survival in patients with B-cell non-Hodgkin's lymphoma. Blood 1997; 90: 4078–4091.

    CAS  PubMed  Google Scholar 

  47. Cho Y, Gorina S, Jeffrey PD, Pavletich NP . Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 1994; 265: 346–355.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Julia Jesdinsky, Michaela Fahrig, Yvonne Blum and Kerstin Heise for excellent technical assistance. We thank Malcolm Taylor for helpful discussions. This work was supported by the Deutsche Krebshilfe, Mildred Scheel-Stiftung (70-3173-Tr3), the IFORES program of the University of Essen, Medical School, the Swiss National Science Foundation and stipends from the Swedish Society for Medical Research and the Werner-Gren Foundations to RR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Schmitz.

Additional information

Supplementary Information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitz, R., Renné, C., Rosenquist, R. et al. Insights into the multistep transformation process of lymphomas: IgH-associated translocations and tumor suppressor gene mutations in clonally related composite Hodgkin's and non-Hodgkin's lymphomas. Leukemia 19, 1452–1458 (2005). https://doi.org/10.1038/sj.leu.2403841

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403841

Keywords

This article is cited by

Search

Quick links