Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Leading Article
  • Published:

Predicting the effect of transcription therapy in hematologic malignancies

Abstract

Molecular lesions of genes encoding for transcriptional regulatory proteins are common oncogenic events in hematologic malignancies. Transcriptional activation and repression both occur by virtue of the choreographed recruitment of multisubunit cofactor complexes to target gene loci. As a consequence, the three-dimensional structure of the target gene is altered and its potential to support transcription is increased or decreased. The complexity of the transcriptional process offers a rich substrate for designing therapeutic agents. The objective of such ‘transcription therapy’ is to regain control over cohorts of target genes and restore the normal genetic and epigenetic programming of the cancer cell. The success of all-trans retinoic acid in the treatment of acute promyelocytic leukemia indicates that transcription therapy can be highly effective and safe. A classification scheme of these therapeutic strategies is proposed herein, which allows predictions to be made regarding specificity, efficacy, disease spectrum and side effects. This framework could help facilitate discussion of the mechanisms of action of transcription therapy drugs as well as the design of preclinical and clinical trials in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

References

  1. Smith E, Sigvardsson M . The roles of transcription factors in B lymphocyte commitment, development, and transformation. J Leukocyte Biol 2004; 75: 973–981.

    CAS  PubMed  Google Scholar 

  2. Scandura JM, Boccuni P, Cammenga J, Nimer SD . Transcription factor fusions in acute leukemia: variations on a theme. Oncogene 2002; 21: 3422–3444.

    CAS  PubMed  Google Scholar 

  3. Look AT . Oncogenic transcription factors in the human acute leukemias. Science 1997; 278: 1059–1064.

    CAS  PubMed  Google Scholar 

  4. Ye BH, Lista F, Lo Coco F, Knowles DM, Offit K, Chaganti RS et al. Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma. Science 1993; 262: 747–750.

    CAS  PubMed  Google Scholar 

  5. Baron BW, Anastasi J, Montag A, Huo D, Baron RM, Karrison T et al. The human BCL6 transgene promotes the development of lymphomas in the mouse. Proc Natl Acad Sci USA 2004; 101: 14198–14203.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Licht JD . AML1 and the AML1-ETO fusion protein in the pathogenesis of t(8;21) AML. Oncogene 2001; 20: 5660–5679.

    CAS  PubMed  Google Scholar 

  7. Ezoe S, Matsumura I, Satoh Y, Tanaka H, Kanakura Y . Cell cycle regulation in hematopoietic stem/progenitor cells. Cell Cycle 2004; 3: 314–318.

    CAS  PubMed  Google Scholar 

  8. Friedman AD . Transcriptional regulation of granulocyte and monocyte development. Oncogene 2002; 21: 3377–3390.

    CAS  PubMed  Google Scholar 

  9. Manser T . Textbook germinal centers? J Immunol 2004; 172: 3369–3375.

    CAS  PubMed  Google Scholar 

  10. Pasqualucci L, Neumeister P, Goossens T, Nanjangud G, Chaganti RS, Kuppers R et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 2001; 412: 341–346.

    CAS  PubMed  Google Scholar 

  11. Avvisati G, Tallman MS . All-trans retinoic acid in acute promyelocytic leukaemia. Best Pract Res Clin Haematol 2003; 16: 419–432.

    CAS  PubMed  Google Scholar 

  12. Wolffe AP, Guschin D . Review: chromatin structural features and targets that regulate transcription. J Struct Biol 2000; 129: 102–122.

    CAS  PubMed  Google Scholar 

  13. Lund AH, van Lohuizen M . Epigenetics and cancer. Genes Dev 2004; 18: 2315–2335.

    CAS  PubMed  Google Scholar 

  14. Buck SW, Gallo CM, Smith JS . Diversity in the Sir2 family of protein deacetylases. J Leukocyte Biol 2004; 75: 939–950.

    CAS  PubMed  Google Scholar 

  15. Hwang KK, Worman HJ . Gene regulation by human orthologs of Drosophila heterochromatin protein 1. Biochem Biophys Res Commun 2002; 293: 1217–1222.

    CAS  PubMed  Google Scholar 

  16. Bird A . DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16: 6–21.

    CAS  PubMed  Google Scholar 

  17. Jenuwein T, Allis CD . Translating the histone code. Science 2001; 293: 1074–1080.

    CAS  PubMed  Google Scholar 

  18. Iguchi-Ariga SM, Schaffner W . CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev 1989; 3: 612–619.

    CAS  PubMed  Google Scholar 

  19. Beato M, Eisfeld K . Transcription factor access to chromatin. Nucleic Acids Res 1997; 25: 3559–3563.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Li J, Lin Q, Wang W, Wade P, Wong J . Specific targeting and constitutive association of histone deacetylase complexes during transcriptional repression. Genes Dev 2002; 16: 687–692.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Yoon HG, Choi Y, Cole PA, Wong J . Reading and function of a histone code involved in targeting corepressor complexes for repression. Mol Cell Biol 2005; 25: 324–335.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM . Structure and ligand of a histone acetyltransferase bromodomain. Nature 1999; 399: 491–496.

    CAS  PubMed  Google Scholar 

  23. Jacobs SA, Khorasanizadeh S . Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science 2002; 295: 2080–2083.

    CAS  PubMed  Google Scholar 

  24. Zegerman P, Canas B, Pappin D, Kouzarides T . Histone H3 lysine 4 methylation disrupts binding of nucleosome remodeling and deacetylase (NuRD) repressor complex. J Biol Chem 2002; 277: 11621–11624.

    CAS  PubMed  Google Scholar 

  25. Collins T, Stone JR, Williams AJ . All in the family: the BTB/POZ, KRAB, and SCAN domains. Mol Cell Biol 2001; 21: 3609–3615.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Davis JN, McGhee L, Meyers S . The ETO (MTG8) gene family. Gene 2003; 303: 1–10.

    CAS  PubMed  Google Scholar 

  27. Lin RJ, Nagy L, Inoue S, Shao W, Miller Jr WH, Evans RM . Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 1998; 391: 811–814.

    CAS  PubMed  Google Scholar 

  28. Huynh KD, Bardwell VJ . The BCL-6 POZ domain and other POZ domains interact with the co-repressors N-CoR and SMRT. Oncogene 1998; 17: 2473–2484.

    CAS  PubMed  Google Scholar 

  29. Lutterbach B, Westendorf JJ, Linggi B, Patten A, Moniwa M, Davie JR et al. ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors. Mol Cell Biol 1998; 18: 7176–7184.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Melnick A, Licht JD . Histone deacetylases as therapeutic targets in hematologic malignancies. Curr Opin Hematol 2002; 9: 322–332.

    PubMed  Google Scholar 

  31. Hassig CA, Fleischer TC, Billin AN, Schreiber SL, Ayer DE . Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 1997; 89: 341–347.

    CAS  PubMed  Google Scholar 

  32. Wen YD, Perissi V, Staszewski LM, Yang WM, Krones A, Glass CK et al. The histone deacetylase-3 complex contains nuclear receptor corepressors. Proc Natl Acad Sci USA 2000; 97: 7202–7207.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D . Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev 1999; 13: 1924–1935.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ernst P, Wang J, Korsmeyer SJ . The role of MLL in hematopoiesis and leukemia. Curr Opin Hematol 2002; 9: 282–287.

    PubMed  Google Scholar 

  35. Hsieh JJ, Ernst P, Erdjument-Bromage H, Tempst P, Korsmeyer SJ . Proteolytic cleavage of MLL generates a complex of N- and C-terminal fragments that confers protein stability and subnuclear localization. Mol Cell Biol 2003; 23: 186–194.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ward JO, McConnell MJ, Carlile GW, Pandolfi PP, Licht JD, Freedman LP . The acute promyelocytic leukemia-associated protein, promyelocytic leukemia zinc finger, regulates 1, 25-dihydroxyvitamin D(3)-induced monocytic differentiation of U937 cells through a physical interaction with vitamin D(3) receptor. Blood 2001; 98: 3290–3300.

    CAS  PubMed  Google Scholar 

  37. Vasanwala FH, Kusam S, Toney LM, Dent AL . Repression of AP-1 function: a mechanism for the regulation of Blimp-1 expression and B lymphocyte differentiation by the B cell lymphoma-6 protooncogene. J Immunol 2002; 169: 1922–1929.

    CAS  PubMed  Google Scholar 

  38. Fujita N, Jaye DL, Geigerman C, Akyildiz A, Mooney MR, Boss JM, Wade PA . MTA3 and Mi-2/NuRD complex regulate cell fate during B-lymphocyte differentiation. Cell 2004; 119: 75–86.

    CAS  PubMed  Google Scholar 

  39. Polo JM, Dell’oso T, Ranuncolo SM, Cerchietti L, Beck D, Da Silva GF et al. Specific peptide interference reveals BCL6 transcriptional and oncogenic mechanisms in B-cell lymphoma cells. Nat Med 2004; 10: 1329–1335.

    CAS  PubMed  Google Scholar 

  40. Melnick A . Reprogramming specific gene expression pathways in B-cell lymphomas. Cell Cycle 2005; 4: 239–241.

    CAS  PubMed  Google Scholar 

  41. Melnick A, Licht JD . Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 1999; 93: 3167–3215.

    CAS  PubMed  Google Scholar 

  42. Larson RS, Tallman MS . Retinoic acid syndrome: manifestations, pathogenesis, and treatment. Best Pract Res Clin Haematol 2003; 16: 453–461.

    CAS  PubMed  Google Scholar 

  43. Johnstone RW, Licht JD . Histone deacetylase inhibitors in cancer therapy: is transcription the primary target? Cancer Cell 2003; 4: 13–18.

    CAS  PubMed  Google Scholar 

  44. Sandor V, Bakke S, Robey RW, Kang MH, Blagosklonny MV, Bender J et al. Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms. Clin Cancer Res 2002; 8: 718–728.

    CAS  PubMed  Google Scholar 

  45. Bea S, Tort F, Pinyol M, Puig X, Hernandez L, Hernandez S et al. BMI-1 gene amplification and overexpression in hematological malignancies occur mainly in mantle cell lymphomas. Cancer Res 2001; 61: 2409–2412.

    CAS  PubMed  Google Scholar 

  46. Ratajczak MZ, Kant JA, Luger SM, Hijiya N, Zhang J, Zon G et al. In vivo treatment of human leukemia in a scid mouse model with c-myb antisense oligodeoxynucleotides. Proc Natl Acad Sci USA 1992; 89: 11823–11827.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Reid GK, Besterman JM, MacLeod AR . Selective inhibition of DNA methyltransferase enzymes as a novel strategy for cancer treatment. Curr Opin Mol Ther 2002; 4: 130–137.

    CAS  PubMed  Google Scholar 

  48. Jamieson AC, Miller JC, Pabo CO . Drug discovery with engineered zinc-finger proteins. Nat Rev Drug Discov 2003; 2: 361–368.

    CAS  PubMed  Google Scholar 

  49. Shaffer AL, Yu X, He Y, Boldrick J, Chan EP, Staudt LM . BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity 2000; 13: 199–212.

    CAS  PubMed  Google Scholar 

  50. Rebar EJ, Huang Y, Hickey R, Nath AK, Meoli D, Nath S et al. Induction of angiogenesis in a mouse model using engineered transcription factors. Nat Med 2002; 8: 1427–1432.

    CAS  PubMed  Google Scholar 

  51. Snowden AW, Zhang L, Urnov F, Dent C, Jouvenot Y, Zhong X et al. Repression of vascular endothelial growth factor A in glioblastoma cells using engineered zinc finger transcription factors. Cancer Res 2003; 63: 8968–8976.

    CAS  PubMed  Google Scholar 

  52. Mourez M, Collier RJ . Use of phage display and polyvalency to design inhibitors of protein–protein interactions. Methods Mol Biol 2004; 261: 213–228.

    CAS  PubMed  Google Scholar 

  53. Crawford M, Woodman R, Ko Ferrigno P . Peptide aptamers: tools for biology and drug discovery. Brief Funct Genomic Proteomic 2003; 2: 72–79.

    CAS  PubMed  Google Scholar 

  54. Nagel-Wolfrum K, Buerger C, Wittig I, Butz K, Hoppe-Seyler F, Groner B . The interaction of specific peptide aptamers with the DNA binding domain and the dimerization domain of the transcription factor Stat3 inhibits transactivation and induces apoptosis in tumor cells. Mol Cancer Res 2004; 2: 170–182.

    CAS  PubMed  Google Scholar 

  55. Ahmad KF, Melnick A, Lax S, Bouchard D, Liu J, Kiang CL et al. Mechanism of SMRT corepressor recruitment by the BCL6 BTB domain. Mol Cell 2003; 12: 1551–1564.

    CAS  PubMed  Google Scholar 

  56. Racanicchi S, Maccherani C, Liberatore C, Billi M, Gelmetti V, Panigada M et al. Targeting fusion protein/corepressor contact restores differentiation response in leukemia cells. EMBO J 2005; 24: 1232–1242.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Schwarze SR, Hruska KA, Dowdy SF . Protein transduction: unrestricted delivery into all cells? Trends Cell Biol 2000; 10: 290–295.

    CAS  PubMed  Google Scholar 

  58. Wadia JS, Stan RV, Dowdy SF . Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med 2004; 10: 310–315.

    CAS  PubMed  Google Scholar 

  59. Snyder EL, Meade BR, Saenz CC, Dowdy SF . Treatment of terminal peritoneal carcinomatosis by a transducible p53-activating peptide. PLoS Biol 2004; 2: E36.

    PubMed  PubMed Central  Google Scholar 

  60. Lepourcelet M, Chen YN, France DS, Wang H, Crews P, Petersen F et al. Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell 2004; 5: 91–102.

    CAS  PubMed  Google Scholar 

  61. Best JL, Amezcua CA, Mayr B, Flechner L, Murawsky CM, Emerson B et al. Identification of small-molecule antagonists that inhibit an activator:coactivator interaction. Proc Natl Acad Sci USA 2004; 101: 17622–17627.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Wong A, Sakamoto KM . Granulocyte–macrophage colony-stimulating factor induces the transcriptional activation of egr-1 through a protein kinase A-independent signaling pathway. J Biol Chem 1995; 270: 30271–30273.

    CAS  PubMed  Google Scholar 

  63. Crans-Vargas HN, Landaw EM, Bhatia S, Sandusky G, Moore TB, Sakamoto KM . Expression of cyclic adenosine monophosphate response-element binding protein in acute leukemia. Blood 2002; 99: 2617–2619.

    CAS  PubMed  Google Scholar 

  64. Zhang DE, Hetherington CJ, Meyers S, Rhoades KL, Larson CJ, Chen HM et al. CCAAT enhancer-binding protein (C/EBP) and AML1 (CBF alpha2) synergistically activate the macrophage colony-stimulating factor receptor promoter. Mol Cell Biol 1996; 16: 1231–1240.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Mao S, Frank RC, Zhang J, Miyazaki Y, Nimer SD . Functional and physical interactions between AML1 proteins and an ETS protein, MEF: implications for the pathogenesis of t(8;21)-positive leukemias. Mol Cell Biol 1999; 19: 3635–3644.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Nerlov C, Graf T . PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. Genes Dev 1998; 12: 2403–2412.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang P, Behre G, Pan J, Iwama A, Wara-Aswapati N, Radomska HS et al. Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. Proc Natl Acad Sci USA 1999; 96: 8705–8710.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Rekhtman N, Radparvar F, Evans T, Skoultchi AI . Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells. Genes Dev 1999; 13: 1398–1411.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Pabst T, Mueller BU, Zhang P, Radomska HS, Narravula S, Schnittger S et al. Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. Nat Genet 2001; 27: 263–270.

    CAS  PubMed  Google Scholar 

  70. Mueller BU, Pabst T, Osato M, Asou N, Johansen LM, Minden MD et al. Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood 2002; 100: 998–1007.

    CAS  PubMed  Google Scholar 

  71. Wechsler J, Greene M, McDevitt MA, Anastasi J, Karp JE, Le Beau MM et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet 2002; 32: 148–152.

    CAS  PubMed  Google Scholar 

  72. Steffen B, Serve H, Berdel WE, Agrawal S, Linggi B, Buchner T et al. Specific protein redirection as a transcriptional therapy approach for t(8;21) leukemia. Proc Natl Acad Sci USA 2003; 100: 8448–8453.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Gregoretti IV, Lee YM, Goodson HV . Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 2004; 338: 17–31.

    CAS  PubMed  Google Scholar 

  74. Reid T, Valone F, Lipera W, Irwin D, Paroly W, Natale R et al. Phase II trial of the histone deacetylase inhibitor pivaloyloxymethyl butyrate (Pivanex, AN-9) in advanced non-small cell lung cancer. Lung Cancer 2004; 45: 381–386.

    PubMed  Google Scholar 

  75. Kuendgen A, Strupp C, Aivado M, Bernhardt A, Hildebrandt B, Haas R et al. Treatment of myelodysplastic syndromes with valproic acid alone or in combination with all-trans retinoic acid. Blood 2004; 104: 1266–1269.

    CAS  PubMed  Google Scholar 

  76. Marshall JL, Rizvi N, Kauh J, Dahut W, Figuera M, Kang MH et al. A phase I trial of depsipeptide (FR901228) in patients with advanced cancer. J Exp Ther Oncol 2002; 2: 325–332.

    CAS  PubMed  Google Scholar 

  77. Kelly WK, Richon VM, O’Connor O, Curley T, MacGregor-Curtelli B, Tong W et al. Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin Cancer Res 2003; 9 (Part 1): 3578–3588.

    CAS  PubMed  Google Scholar 

  78. Gilbert J, Baker SD, Bowling MK, Grochow L, Figg WD, Zabelina Y et al. A phase I dose escalation and bioavailability study of oral sodium phenylbutyrate in patients with refractory solid tumor malignancies. Clin Cancer Res 2001; 7: 2292–2300.

    CAS  PubMed  Google Scholar 

  79. Gore SD, Weng LJ, Figg WD, Zhai S, Donehower RC, Dover G et al. Impact of prolonged infusions of the putative differentiating agent sodium phenylbutyrate on myelodysplastic syndromes and acute myeloid leukemia. Clin Cancer Res 2002; 8: 963–970.

    CAS  PubMed  Google Scholar 

  80. Piekarz RL, Robey R, Sandor V, Bakke S, Wilson WH, Dahmoush L et al. Inhibitor of histone deacetylation, depsipeptide (FR901228), in the treatment of peripheral and cutaneous T-cell lymphoma: a case report. Blood 2001; 98: 2865–2868.

    CAS  PubMed  Google Scholar 

  81. Di Croce L, Raker VA, Corsaro M, Fazi F, Fanelli M, Faretta M et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 2002; 295: 1079–1082.

    CAS  PubMed  Google Scholar 

  82. Egger G, Liang G, Aparicio A, Jones PA . Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004; 429: 457–463.

    CAS  PubMed  Google Scholar 

  83. Karpf AR, Moore BC, Ririe TO, Jones DA . Activation of the p53 DNA damage response pathway after inhibition of DNA methyltransferase by 5-aza-2′-deoxycytidine. Mol Pharmacol 2001; 59: 751–757.

    CAS  PubMed  Google Scholar 

  84. Gius D, Cui H, Bradbury CM, Cook J, Smart DK, Zhao S et al. Distinct effects on gene expression of chemical and genetic manipulation of the cancer epigenome revealed by a multimodality approach. Cancer Cell 2004; 6: 361–371.

    CAS  PubMed  Google Scholar 

  85. Schneider-Stock R, Diab-Assef M, Rohrbeck A, Foltzer-Jourdainne C, Boltze C, Hartig R et al. 5-Aza-cytidine is a potent inhibitor of DNA methyltransferase 3a and induces apoptosis in HCT-116 colon cancer cells via Gadd45- and p53-dependent mechanisms. J Pharmacol Exp Ther 2005; 312: 525–536.

    CAS  PubMed  Google Scholar 

  86. Zhu WG, Hileman T, Ke Y, Wang P, Lu S, Duan W et al. 5-Aza-2′-deoxycytidine activates the p53/p21Waf1/Cip1 pathway to inhibit cell proliferation. J Biol Chem 2004; 279: 15161–15166.

    CAS  PubMed  Google Scholar 

  87. Gomyo Y, Sasaki J, Branch C, Roth JA, Mukhopadhyay T . 5-Aza-2′-deoxycytidine upregulates caspase-9 expression cooperating with p53-induced apoptosis in human lung cancer cells. Oncogene 2004; 23: 6779–6787.

    CAS  PubMed  Google Scholar 

  88. Sacchi S, Kantarjian HM, O’Brien S, Cortes J, Rios MB, Giles FJ et al. Chronic myelogenous leukemia in nonlymphoid blastic phase: analysis of the results of first salvage therapy with three different treatment approaches for 162 patients. Cancer 1999; 86: 2632–2641.

    CAS  PubMed  Google Scholar 

  89. Silverman LR, Demakos EP, Peterson BL, Kornblith AB, Holland JC, Odchimar-Reissig R et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol 2002; 20: 2429–2440.

    CAS  PubMed  Google Scholar 

  90. Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW et al. Induction of tumors in mice by genomic hypomethylation. Science 2003; 300: 489–492.

    CAS  PubMed  Google Scholar 

  91. Ng HH, Zhang Y, Hendrich B, Johnson CA, Turner BM, Erdjument-Bromage H et al. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet 1999; 23: 58–61.

    CAS  PubMed  Google Scholar 

  92. Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB . Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 1999; 21: 103–107.

    CAS  PubMed  Google Scholar 

  93. Miura A, Yonebayashi S, Watanabe K, Toyama T, Shimada H, Kakutani T . Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis. Nature 2001; 411: 212–214.

    CAS  PubMed  Google Scholar 

  94. Selker EU . Trichostatin A causes selective loss of DNA methylation in Neurospora. Proc Natl Acad Sci USA 1998; 95: 9430–9435.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Ye BH . The role of Bcl-6 in normal lymphoid system and non-Hodgkin's lymphomas. In: Ravid K, Licht JD, (eds). Transcription Factors: Normal and Malignant Development of Blood Cells. New York: John Wiley & Sons, 2001, pp 271–289.

    Google Scholar 

  96. Boxer LM, Dang CV . Translocations involving c-myc and c-myc function. Oncogene 2001; 20: 5595–5610.

    CAS  PubMed  Google Scholar 

  97. Berg T, Cohen SB, Desharnais J, Sonderegger C, Maslyar DJ, Goldberg J et al. Small-molecule antagonists of Myc/Max dimerization inhibit Myc-induced transformation of chicken embryo fibroblasts. Proc Natl Acad Sci USA 2002; 99: 3830–3835.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Melnick AM, Westendorf JJ, Polinger A, Carlile GW, Arai S, Ball HJ et al. The ETO protein disrupted in t(8;21)-associated acute myeloid leukemia is a corepressor for the promyelocytic leukemia zinc finger protein. Mol Cell Biol 2000; 20: 2075–2086.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Chevallier N, Corcoran CM, Lennon C, Hyjek E, Chadburn A, Bardwell VJ et al. ETO protein of t(8;21) AML is a corepressor for Bcl-6 B-cell lymphoma oncoprotein. Blood 2004; 103: 1454–1463.

    CAS  PubMed  Google Scholar 

  100. Izutsu K, Kurokawa M, Imai Y, Ichikawa M, Asai T, Maki K et al. The t(3;21) fusion product, AML1/Evi-1 blocks AML1-induced transactivation by recruiting CtBP. Oncogene 2002; 21: 2695–2703.

    CAS  PubMed  Google Scholar 

  101. Dhordain P, Lin RJ, Quief S, Lantoine D, Kerckaert JP, Evans RM et al. The LAZ3(BCL-6) oncoprotein recruits a SMRT/mSIN3A/histone deacetylase containing complex to mediate transcriptional repression. Nucleic Acids Res 1998; 26: 4645–4651.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. David G, Alland L, Hong SH, Wong CW, DePinho RA, Dejean A . Histone deacetylase associated with mSin3A mediates repression by the acute promyelocytic leukemia-associated PLZF protein. Oncogene 1998; 16: 2549–2556.

    CAS  PubMed  Google Scholar 

  103. Lutterbach B, Westendorf JJ, Linggi B, Isaac S, Seto E, Hiebert SW . A mechanism of repression by acute myeloid leukemia-1, the target of multiple chromosomal translocations in acute leukemia. J Biol Chem 2000; 275: 651–656.

    CAS  PubMed  Google Scholar 

  104. Shao W, Rosenauer A, Mann K, Chang CP, Rachez C, Freedman LP et al. Ligand-inducible interaction of the DRIP/TRAP coactivator complex with retinoid receptors in retinoic acid-sensitive and -resistant acute promyelocytic leukemia cells. Blood 2000; 96: 2233–2239.

    CAS  PubMed  Google Scholar 

  105. Xia ZB, Anderson M, Diaz MO, Zeleznik-Le NJ . MLL repression domain interacts with histone deacetylases, the polycomb group proteins HPC2 and BMI-1, and the corepressor C-terminal-binding protein. Proc Natl Acad Sci USA 2003; 100: 8342–8347.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Horlein AJ, Naar AM, Heinzel T, Torchia J, Gloss B, Kurokawa R et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 1995; 377: 397–404.

    CAS  PubMed  Google Scholar 

  107. Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 2002; 10: 1107–1117.

    CAS  PubMed  Google Scholar 

  108. Sobulo OM, Borrow J, Tomek R, Reshmi S, Harden A, Schlegelberger B et al. MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukemia with a t(11;16)(q23;p13.3). Proc Natl Acad Sci USA 1997; 94: 8732–8737.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Borrow J, Stanton Jr VP, Andresen JM, Becher R, Behm FG, Chaganti RS et al. The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet 1996; 14: 33–41.

    CAS  PubMed  Google Scholar 

  110. Chen D, Ma H, Hong H, Koh SS, Huang SM, Schurter BT et al. Regulation of transcription by a protein methyltransferase. Science 1999; 284: 2174–2177.

    CAS  PubMed  Google Scholar 

  111. Wang Y, Wysocka J, Sayegh J, Lee YH, Perlin JR, Leonelli L et al. Human PAD4 regulates histone arginine methylation levels via demethylation. Science 2004; 306: 279–283.

    CAS  PubMed  Google Scholar 

  112. Visser HP, Gunster MJ, Kluin-Nelemans HC, Manders EM, Raaphorst FM, Meijer CJ et al. The Polycomb group protein EZH2 is upregulated in proliferating, cultured human mantle cell lymphoma. Br J Haematol 2001; 112: 950–958.

    CAS  PubMed  Google Scholar 

  113. Roberts CW, Orkin SH . The SWI/SNF complex – chromatin and cancer. Nat Rev Cancer 2004; 4: 133–142.

    CAS  PubMed  Google Scholar 

  114. Muthuswami R, Mesner LD, Wang D, Hill DA, Imbalzano AN, Hockensmith JW . Phosphoaminoglycosides inhibit SWI2/SNF2 family DNA-dependent molecular motor domains. Biochemistry 2000; 39: 4358–4365.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AM is funded by NCI R01CA104348, the Sidney Kimmel Foundation for Cancer Research, the Chemotherapy Foundation and the G&P Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Melnick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melnick, A. Predicting the effect of transcription therapy in hematologic malignancies. Leukemia 19, 1109–1117 (2005). https://doi.org/10.1038/sj.leu.2403777

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403777

Keywords

This article is cited by

Search

Quick links