Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Microsatellite instability and hMLH1 promoter hypermethylation in Richter’s transformation of chronic lymphocytic leukemia

Abstract

Chronic lymphocytic leukemia (CLL) is an indolent B cell non-Hodgkin lymphoma (NHL) that may transform into diffuse large B cell lymphoma (DLBL). This transformation is referred to as Richter’s syndrome or transformation. To analyze whether microsatellite instability (MSI) and DNA mismatch repair defects are associated with Richter’s transformation, we have performed microsatellite analysis, mutational analysis of hMLH1 and hMSH2 genes and methylation status analysis of CpG island of the hMLH1 promoter on serial biopsy specimens from 19 patients with CLL. Ten cases of CLL showed no histologic alteration in the second biopsy, and nine cases of CLL underwent morphologic transformation to DLBL in the second biopsy. Using eight microsatellite loci, high level of MSI was associated with Richter’s transformation in four cases of CLL, but none of the CLLs displayed this level of MSI without transformation. Mutations of the hMLH1 or hMSH2 genes were not detected in any of the lymphoma samples. In five cases of Richter’s transformation the hMLH1 promoter was hypermethylated in both CLL and DLBL samples. Hypermethylation of the hMLH1 promoter associated with high-level of MSI in four cases, and low-level of MSI in one case. These results suggest that in certain cases of Richter’s transformation the DNA mismatch-repair defect-initiated genetic instability may play a role in tumor progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. O’Brien S, delGiglio A, Keating MJ . Advances in the biology and treatment of B-cell chronic lymphocytic leukemia. Blood 1995; 85: 307–318.

    PubMed  Google Scholar 

  2. Giles FJ, O’Brien SM, Keating MJ . Chronic lymphocytic leukemia in (Richter’s) transformation. Semin Oncol 1998; 25: 117–125.

    CAS  PubMed  Google Scholar 

  3. Matolcsy A . High-grade transformation of low-grade non-Hodgkin’s lymphomas: mechanisms of tumor progression. Leuk Lymphoma 1999; 34: 251–259.

    Article  CAS  Google Scholar 

  4. Muller-Hermelink HK, Zettl A, Pfeifer W, Ott G . Pathology of lymphoma progression. Histopathol 2001; 38: 285–306.

    Article  CAS  Google Scholar 

  5. Koduru PR, Lichtman SM, Similari TF, Sun T, Goh JC, Karp L, Hall W, Hashimoto S, Chiorazzi N, Broome JD . Serial phenotypic, cytogenetic and molecular genetic studies in Richter’s syndrome: demonstration of lymphoma development from the chronic lymphocytic leukaemia cells. Br J Haematol 1993; 85: 613–616.

    Article  CAS  Google Scholar 

  6. Brynes RK, McCourty A, Sun NC, Koo CH . Trisomy 12 in Richter’s transformation of chronic lymphocytic leukemia. Am J Clin Pathol 1995; 104: 199–203.

    Article  CAS  Google Scholar 

  7. Qian L, Gong J, Liu J, Broome JD, Koduru PR . Cyclin D2 promoter disrupted by t(12;22)(p13;q11.2) during transformation of chronic lymphocytic leukemia to non-Hodgkin’s lymphoma. Br J Haematol 1999; 106: 477–485.

    Article  CAS  Google Scholar 

  8. Torelli UL, Torelli GM, Emilia G, Selleri L, Venturelli D, Artusi T, Donelli A, Colo A, Fornieri C . Simultaneously increased expression of the c-myc and mu chain genes in the acute blastic transformation of chronic lymphocytic leukaemia. Br J Haematol 1987; 65: 165–170.

    Article  CAS  Google Scholar 

  9. Pinyol M, Cobo F, Bea S, Jares P, Nayach I, Fernandez PL, Montserrat E, Cardesa A, Campo E . p16INK4a gene inactivation by deletions, mutations, and hypermathylation is associated with transformed and aggressive variants of non-Hodgkin’s lymphomas. Blood 1998; 91: 2977–2984.

    CAS  Google Scholar 

  10. Gaidano G, Ballerini P, Gong D, Inghirami G, Neri A, Newcomb EW, Magrath IT, Knowles M, Dalla-Favera R . p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc Natl Acad Sci USA 1991; 88: 5413–5417.

    Article  CAS  Google Scholar 

  11. Ichikawa A, Hotta T, Takagi N, Tsushita K, Kinoshita T, Nagai H, Murakami Y, Hayashi K, Saito H . Mutation of p53 gene and their relation to disease progression in B-cell lymphoma. Blood 1992; 79: 2701–2707.

    CAS  Google Scholar 

  12. Arranz E, Martinez B, Richart A, Echezarreta G, Roman A, Rivas C, Benitez J . Increased C-MYC oncogene copy number detected with combined modified comparative genomic hybridization and FISH analysis in a Richter syndrome case with complex karyotype. Cancer Genet Cytogenet 1998; 106: 80–83.

    Article  CAS  Google Scholar 

  13. Golay J, Luppi M, Songia S, Palvarini C, Lombardi L, Aiello A, Delia D, Lam K, Crawford DH, Biondi A, Barbui T, Rambaldi A, Introna M . Expression of A-myb, but not c-myb and B-myb, is restricted to Burkitt’s lymphoma, sIg+ B-acute lymphoblastic leukemia, and a subset of chronic lymphocytic leukemias. Blood 1996; 87: 1900–1911.

    CAS  PubMed  Google Scholar 

  14. Karran P . Microsatellite instability and DNA mismatch repair in human cancer. Semin Cancer Biol 1996; 7: 15–24.

    Article  CAS  Google Scholar 

  15. Ramel C . Mini- and microsatellites. Environ Health Perspect 1997; 105 (Suppl. 4), 781–789.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Jaffe ES, Harris NL, Stein H, Vardiman JW . Pathology and genetics of tumors of haematopoietic and lymphoid tissues. In: World Health Organization Classification of Tumors, IARC Press, Lyon (2001.

    Google Scholar 

  17. Miller SA, Dykes DD, Polesky HF . A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acid Res 1988; 16: 1215.

    Article  CAS  Google Scholar 

  18. Matolcsy A, Inghirami G, Knowles DM . Molecular genetic demonstration of the diverse evolution of Richter’s syndrome (chronic lymphocytic leukemia and subsequential large cell lymphoma). Blood 1994; 83: 1363–1372.

    CAS  Google Scholar 

  19. Han HJ, Maruyama M, Baba S, Park JG, Nakamura Y . Genomic structure of human mismatch repair gene, hMLH1, and its mutation analysis in patients with hereditary non-polyposis colorectal cancer (HNPCC). Hum Mol Genet 1995; 4: 237–242.

    Article  CAS  Google Scholar 

  20. Hangaishi A, Ogawa S, Mitani K, Hosoya N, Chiba S, Yazaki Y, Hirai H . Mutations and loss of expression of a mismatch repair gene, hMLH1, in leukemia and lymphoma cell lines. Blood 1997; 89: 1740–1747.

    CAS  PubMed  Google Scholar 

  21. Fishel R, Lescoe MK, Rao MR, Copeland NG, Jenkins NA, Garber J, Kane M, Kolodner R . The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 1993; 75: 1027–1038.

    Article  CAS  Google Scholar 

  22. Kane MF, Loda M, Gaida GM, Lipman J, Mishra R, Goldman H, Jessup JM, Kolodner R . Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res 1997; 57: 808–811.

    CAS  Google Scholar 

  23. Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, Meltzer SJ, Rodriguez-Bigas MA, Fodde R, Ranzani GN, Srivastava S . A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 1998; 58: 5248–5257.

    CAS  Google Scholar 

  24. Volpe G, Gamberi B, Pastore C, Roetto A, Pautasso M, Parvis G, Camaschella C, Mazza U, Saglio G, Gaidano G . Analysis of microsatellite instability in chronic lymphoproliferative disorders. Ann Hematol 1996; 72: 67–71.

    Article  CAS  Google Scholar 

  25. Gartenhaus R, Johns MM, Wang P, Rai K, Sidransky D . Mutator phenotype in a subset of chronic lymphocytic leukemia. Blood 1996; 87: 38–41.

    CAS  Google Scholar 

  26. Gamberi B, Gaidano G, Parsa N, Carbone A, Roncella S, Knowles DM, Louie DC, Shibata D, Chaganti RS, Dalla-Favera R . Microsatellite instability is rare in B-cell non-Hodgkin’s lymphomas. Blood 1997; 89: 975–979.

    CAS  PubMed  Google Scholar 

  27. Wada C, Shionoya S, Fujino Y, Tokuhiro H, Akahoshi T, Uchida T, Ohtani H . Genomic instability of microsatellite repeats and its association with the evolution of chronic myelogenous leukemia. Blood 1994; 83: 3449–3456.

    CAS  Google Scholar 

  28. Nagy M, Balázs M, Ádám Zs, Petkó Zs, Tímár B, Szereday Z, László T, Warnke RA, Matolcsy A . Genetic instability is associated with histological transformation of follicle center lymphoma. Leukemia 2000; 14: 2142–2148.

    Article  CAS  Google Scholar 

  29. Starostik P, Greiner A, Schwarz S, Patzner J, Schultz A, Müller-Hermelink HK . The role of microsatellite instability in gastric low- and high-grade lymphoma development. Am J Pathol 2000; 157: 1129–1136.

    Article  CAS  Google Scholar 

  30. Beà S, López-Guillermo A, Ribas M, Puig X, Pinyol M, Carrió A, Zamora L, Soler F, Bosch F, Stilgenbauer S, Colomer D, Miró R, Montserrat E, Campo E . Genetic imbalances in progressed B-cell chronic lymphocytic leukemia and transformed large-cell lymphoma (Richter’s syndrome). Am J Pathol 2002; 161: 957–968.

    Article  Google Scholar 

  31. Dottori M, Down M, Huttmann A, Fitzpatrick DR, Boyd AW . Cloning and characterization of EphA3 (Hek) gene promoter: DNA methylation regulates expression in hematopoietic tumor cells. Blood 1999; 94: 2477–2486.

    CAS  PubMed  Google Scholar 

  32. Baur AS, Shaw P, Burri N, Delacretaz F, Bosman FT, Chaubert P . Frequent methylation silencing of p15INK4b (MTS2) and p16INK4a (MTS1) in B-cell and T-cell lymphomas. Blood 1999; 94: 1773–1781.

    CAS  Google Scholar 

  33. Kawano S, Miller CW, Gombart AF, Bartram CR, Matsuo Y, Asou H, Sakashita A, Said J, Tatsumi E, Koeffler HP . Loss of p73 gene expression in leukemias/lymphomas due to hypermethylation. Blood 1999; 94: 1113–1120.

    CAS  Google Scholar 

  34. Katzenellenbogen RA, Baylin SB, Herman JG . Hypermethylation of DAP-kinase CpG island is a common alteration in B-cell malignancies. Blood 1999; 93: 4347–4353.

    CAS  PubMed  Google Scholar 

  35. Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP . Alteration in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 1998; 72: 141–196.

    Article  CAS  Google Scholar 

  36. Fleisher AS, Esteller M, Tamura G, Rashid A, Stine OC, Yin J, Zou T, Abraham JM, Kong D, Nishizuka S, James SP, Wilson KT, Herman JG, Meltzer SJ . Hypermethylation of the hMLH1 gene promoter is associated with microsatellite instability in early human gastric neoplasia. Oncogene 2001; 20: 329–335.

    Article  CAS  Google Scholar 

  37. Esteller M, Catasus L, Matias-Guiu X, Mutter GL, Prat J, Baylin SB, Herman JG . hMLH1 promoter hypermathylation is an early event in human endometrial tumorigenesis. Am J Pathol 1999; 155: 1767–1772.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Hungarian National Science Foundation OTKA T032572 and T034410 and from the Hungarian Ministry of Health ETT 332/2000.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fülöp, Z., Csernus, B., Tímár, B. et al. Microsatellite instability and hMLH1 promoter hypermethylation in Richter’s transformation of chronic lymphocytic leukemia. Leukemia 17, 411–415 (2003). https://doi.org/10.1038/sj.leu.2402792

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402792

Keywords

This article is cited by

Search

Quick links