Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight
  • Published:

Spotlight on Molecular Targeted Therapy

Sphingosine 1-phosphate as a therapeutic agent

Abstract

The bioactive sphingolipid metabolite sphingosine-1-phosphate (S1P), formed by activation of sphingosine kinase in response to diverse stimuli, is an important lipid mediator that has novel dual actions – both inside and outside of cells. S1P is the ligand for a family of five G protein-coupled receptors. Activation of these GPCRs by S1P or dihydro-S1P regulates diverse processes, including cell migration, angiogenesis, vascular maturation, heart development, and neurite retraction. There is also abundant evidence that S1P can function as a second messenger important for regulation of calcium homeostasis, cell growth, and suppression of apoptosis. In many cases, the intracellular level of S1P and ceramide, another important sphingolipid metabolite associated with cell death and cell growth arrest, coordinately determine cell fate. Changes in S1P and ceramide have been implicated in a number of pathological conditions in which apoptosis plays an important role. Importantly, radiation-induced oocyte loss in adult female mice, the event that drives premature ovarian failure and infertility in female cancer patients, was completely prevented by in vivotherapy with S1P. Understanding the biosynthesis, metabolism and functions of S1P can uncover new targets for the pharmaceutical and therapeutic applications of S1P.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Kolesnick RN . 1,2-Diacylglycerols but not phorbol esters stimulate sphingomyelin hydrolysis in GH3 pituitary cells J Biol Chem 1987 262: 16759–16762

    CAS  PubMed  Google Scholar 

  2. Spiegel S, Foster D, Kolesnick RN . Signal transduction through lipid second messengers Curr Opin Cell Biol 1996 8: 159–167

    Article  CAS  PubMed  Google Scholar 

  3. Hannun Y . Functions of ceramide in coordinating cellular responses to stress Science 1996 274: 1855–1859

    Article  CAS  PubMed  Google Scholar 

  4. Merrill AH Jr, Schmelz E-M, Dillehay DL, Spiegel S, Shayman JA, Schroeder JJ, Riley RT, Voss KA, Wang E . Sphingolipids – the enigmatic lipid class: biochemistry, physiology, and pathophysiology Toxicol Appl Pharmacol 1997 142: 208–225

    Article  CAS  PubMed  Google Scholar 

  5. Kolesnick R, Hannun YA . Ceramide and apoptosis Trends Biochem Sci 1999 24: 224–225

    Article  CAS  PubMed  Google Scholar 

  6. Spiegel S, Milstien S . Sphingosine-1-phosphate: signaling inside and out FEBS Lett 2000 476: 55–67

    Article  CAS  PubMed  Google Scholar 

  7. Hannun YA, Luberto C, Argraves KM . Enzymes of sphingolipid metabolism: from modular to integrative signaling Biochemistry 2001 40: 4893–4903

    Article  CAS  PubMed  Google Scholar 

  8. Spiegel S, Merrill AH Jr . Sphingolipid metabolism and cell growth regulation FASEB J 1996 10: 1388–1397

    Article  CAS  PubMed  Google Scholar 

  9. Kolesnick RN, Kronke M . Regulation of ceramide production and apoptosis Annu Rev Physiol 1998 60: 643–665

    Article  CAS  PubMed  Google Scholar 

  10. Olivera A, Spiegel S . Sphingosine-1-phosphate as a second messenger in cell proliferation induced by PDGF and FCS mitogens Nature 1993 365: 557–560

    Article  CAS  PubMed  Google Scholar 

  11. Cuvillier O, Pirianov G, Kleuser B, Vanek PG, Coso OA, Gutkind S, Spiegel S . Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate Nature 1996 381: 800–803

    Article  CAS  PubMed  Google Scholar 

  12. Perez GI, Knudson CM, Leykin L, Korsmeyer SJ, Tilly JL . Apoptosis-associated signaling pathways are required for chemotherapy-mediated female germ cell destruction Nat Med 1997 3: 1228–1232

    Article  CAS  PubMed  Google Scholar 

  13. Xia P, Wang L, Gamble JR, Vadas MA . Activation of sphingosine kinase by tumor necrosis factor-alpha inhibits apoptosis in human endothelial cells J Biol Chem 1999 274: 34499–34505

    Article  CAS  PubMed  Google Scholar 

  14. Morita Y, Perez GI, Paris F, Miranda SR, Ehleiter D, Haimovitz-Friedman A, Fuks Z, Xie Z, Reed JC, Schuchman EH, Kolesnick RN, Tilly JL . Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy Nat Med 2000 6: 1109–1114

    Article  CAS  PubMed  Google Scholar 

  15. Kohama T, Olivera A, Edsall L, Nagiec MM, Dickson R, Spiegel S . Molecular cloning and functional characterization of murine sphingosine kinase J Biol Chem 1998 273: 23722–23728

    Article  CAS  PubMed  Google Scholar 

  16. Nava VE, Lacana E, Poulton S, Liu H, Sugiura M, Kono K, Milstien S, Kohama T, Spiegel S . Functional characterization of human sphingosine kinase-1 FEBS Lett 2000 473: 81–84

    Article  CAS  PubMed  Google Scholar 

  17. Pitson SM, D'Andrea RJ, Vandeleur L, Moretti PA, Xia P, Gamble JR, Vadas MA, Wattenberg BW . Human sphingosine kinase: purification, molecular cloning and characterization of the native and recombinant enzymes Biochem J 2000 350: 429–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu H, Sugiura M, Nava VE, Edsall LC, Kono K, Poulton S, Milstien S, Kohama T, Spiegel S . Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform J Biol Chem 2000 275: 19513–19520

    Article  CAS  PubMed  Google Scholar 

  19. Nagiec MM, Skrzypek M, Nagiec EE, Lester RL, Dickson RC . The LCB4 (YOR171c) and LCB5 (YLR260w) genes of Saccharomyces encode long chain base kinases J Biol Chem 1998 273: 19437–19442

    Article  CAS  PubMed  Google Scholar 

  20. Nishiura H, Tamura K, Morimoto Y, Imai H . Characterization of sphingolipid long-chain base kinase in Arabidopsis thaliana Biochem Soc Trans 2000 28: 747–748

    Article  CAS  PubMed  Google Scholar 

  21. Pyne S, Chapman J, Steele L, Pyne NJ . Sphingomyelin-derived lipids differentially regulate the extracellular signal-regulated kinase 2 (ERK-2) and c-Jun N-terminal kinase (JNK) signal cascades in airway smooth muscle cells Eur J Biochem 1996 237: 819–826

    Article  CAS  PubMed  Google Scholar 

  22. Coroneos E, Martinez M, McKenna S, Kester M . Differential regulation of sphingomyelinase and ceramidase activities by growth factors and cytokines J Biol Chem 1995 270: 23305–23309

    Article  CAS  PubMed  Google Scholar 

  23. Edsall LC, Pirianov GG, Spiegel S . Involvement of sphingosine 1-phosphate in nerve growth factor-mediated neuronal survival and differentiation J Neurosci 1997 17: 6952–6960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Meyer zu Heringdorf D, Lass H, Alemany R, Laser KT, Neumann E, Zhang C, Schmidt M, Rauen U, Jakobs KH, van Koppen CJ . Sphingosine kinase-mediated Ca2+ signalling by G-protein-coupled receptors EMBO J 1998 17: 2830–2837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nikolova-Karakashian M, Morgan ET, Alexander C, Liotta DC, Merrill AH Jr . Bimodal regulation of ceramidase by interleukin-1beta. Implications for the regulation of cytochrome p450 2C11 J Biol Chem 1997 272: 18718–18724

    Article  CAS  PubMed  Google Scholar 

  26. Choi OH, Kim J-H, Kinet J-P . Calcium mobilization via sphingosine kinase in signalling by the FcεRI antigen receptor Nature 1996 380: 634–636

    Article  CAS  PubMed  Google Scholar 

  27. Melendez A, Floto RA, Gillooly DJ, Harnett MM, Allen JM . FcγRI coupling to phospholipase D initiates sphingosine kinase-mediated calcium mobilization and vesicular trafficking J Biol Chem 1998 273: 9393–9402

    Article  CAS  PubMed  Google Scholar 

  28. Mattie M, Brooker G, Spiegel S . Sphingosine-1-phosphate, a putative second messenger, mobilizes calcium from internal stores via an inositol trisphosphate-independent pathway J Biol Chem 1994 269: 3181–3188

    CAS  PubMed  Google Scholar 

  29. Rani CS, Berger A, Wu J, Sturgill TW, Beitner-Johnson D, LeRoith D, Varticovski L, Spiegel S . Divergence in signal transduction pathways of PDGF and EGF receptors: involvement of sphingosine-1-phosphate in PDGF but not EGF signaling J Biol Chem 1997 272: 10777–10783

    Article  CAS  PubMed  Google Scholar 

  30. Van Brocklyn JR, Lee MJ, Menzeleev R, Olivera A, Edsall L, Cuvillier O, Thomas DM, Coopman PJP, Thangada S, Hla T, Spiegel S . Dual actions of sphingosine-1-phosphate: extracellular through the Gi-coupled orphan receptor edg-1 and intracellular to regulate proliferation and survival J Cell Biol 1998 142: 229–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cuvillier O, Rosenthal DS, Smulson ME, Spiegel S . Sphingosine 1-phosphate inhibits activation of caspases that cleave poly(ADP-ribose) polymerase and lamins during Fas- and ceramide-mediated apoptosis in Jurkat T lymphocytes J Biol Chem 1998 273: 2910–2916

    Article  CAS  PubMed  Google Scholar 

  32. Olivera A, Kohama T, Edsall LC, Nava V, Cuvillier O, Poulton S, Spiegel S . Sphingosine kinase expression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival J Cell Biol 1999 147: 545–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xia P, Gamble JR, Wang L, Pitson SM, Moretti PA, Wattenberg BW, D'Andrea RJ, Vadas MA . An oncogenic role of sphingosine kinase Curr Biol 2000 10: 1527–1530

    Article  CAS  PubMed  Google Scholar 

  34. Edsall LC, Cuvillier O, Twitty S, Spiegel S, Milstien S . Sphingosine kinase expression regulates apoptosis and caspase activation in PC12 cells J Neurochem 2001 76: 1573–1584

    Article  CAS  PubMed  Google Scholar 

  35. Mandala SM, Thornton R, Galve-Roperh I, Poulton S, Peterson C, Olivera A, Bergstrom J, Kurtz MB, Spiegel S . Molecular cloning and characterization of a lipid phosphohydrolase that degrades sphingosine-1-phosphate and induces cell death Proc Natl Acad Sci USA 2000 97: 7859–7864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Saba JD, Nara F, Bielawska A, Garrett S, Hanun YA . The BST1 gene of Saccharomyces cerevisiae is the sphingosine-1-phosphate lyase J Biol Chem 1997 272: 26087–26090

    Article  CAS  PubMed  Google Scholar 

  37. Gottlieb D, Heideman W, Saba JD . The DPL1 gene is involved in mediating the response to nutrient deprivation in Saccharomyces cerevisiae Mol Cell Biol Res Commun 1999 1: 66–71

    Article  CAS  PubMed  Google Scholar 

  38. Zhou J, Saba JD . Identification of the first mammalian sphingosine phosphate lyase gene and its functional expression in yeast Biochem Biophys Res Commun 1998 242: 502–507

    Article  CAS  PubMed  Google Scholar 

  39. Van Veldhoven PP, Gijsbers S, Mannaerts GP, Vermeesch JR, Brys V . Human sphingosine-1-phosphate lyase: cDNA cloning, functional expression studies and mapping to chromosome 10q22(1) Biochim Biophys Acta 2000 1487: 128–134

    Article  CAS  PubMed  Google Scholar 

  40. Pyne S, Pyne NJ . Sphingosine 1-phosphate signalling in mammalian cells Biochem J 2000 349: 385–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Okamoto H, Takuwa N, Yokomizo T, Sugimoto N, Sakurada S, Shigematsu H, Takuwa Y . Inhibitory regulation of Rac activation, membrane ruffling, and cell migration by the G protein-coupled sphingosine-1-phosphate receptor EDG5 but not EDG1 or EDG3 Mol Cell Biol 2000 20: 9247–9261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee MJ, Thangada S, Claffey KP, Ancellin N, Liu CH, Kluk M, Volpi M, Sha'afi RI, Hla T . Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate Cell 1999 99: 301–312

    Article  CAS  PubMed  Google Scholar 

  43. Bar-Sagi D, Hall A . Ras and Rho GTPases: a family reunion Cell 2000 103: 227–238

    Article  CAS  PubMed  Google Scholar 

  44. Hall A . Rho GTPases and the actin cytoskeleton Science 1998 279: 509–514

    Article  CAS  PubMed  Google Scholar 

  45. Kupperman E, An S, Osborne N, Waldron S, Stainier DY . A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development Nature 2000 406: 192–195

    Article  CAS  PubMed  Google Scholar 

  46. Liu Y, Wada R, Yamashita T, Mi Y, Deng CX, Hobson JP, Rosenfeldt HM, Nava VE, Chae SS, Lee MJ, Liu CH, Hla T, Spiegel S, Proia RL . Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation J Clin Invest 2000 106: 951–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hobson JP, Rosenfeldt HM, Barak LS, Olivera A, Poulton S, Caron MG, Milstien S, Spiegel S . Role of the sphingosine-1-phosphate receptor EDG-1 in PDGF-induced cell motility Science 2001 291: 1800–1803

    Article  CAS  PubMed  Google Scholar 

  48. Lindahl P, Hellstrom M, Kalen M, Betsholtz C . Endothelial-perivascular cell signaling in vascular development: lessons from knockout mice Curr Opin Lipidol 1998 9: 407–411

    Article  CAS  PubMed  Google Scholar 

  49. Hellstrom M, Kaln M, Lindahl P, Abramsson A, Betsholtz C . Role of PDGF-β and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse Development 1999 126: 3047–3055

    CAS  PubMed  Google Scholar 

  50. Alemany R, Sichelschmidt B, zu Heringdorf DM, Lass H, van Koppen CJ, Jakobs KH . Stimulation of sphingosine-1-phosphate formation by the P2Y(2) receptor in HL-60 cells: Ca(2+) requirement and implication in receptor-mediated Ca(2+) mobilization, but not MAP kinase activation Mol Pharmacol 2000 58: 491–497

    Article  CAS  PubMed  Google Scholar 

  51. Alemany R, Meyer zu Heringdorf D, van Koppen CJ, Jakobs KH . Formyl peptide receptor signaling in HL-60 cells through sphingosine kinase J Biol Chem 1999 274: 3994–3999

    Article  CAS  PubMed  Google Scholar 

  52. Kleuser B, Cuvillier O, Spiegel S . 1Alpha,25-dihydroxyvitamin D3 inhibits programmed cell death in HL-60 cells by activation of sphingosine kinase Cancer Res 1998 58: 1817–1824

    CAS  PubMed  Google Scholar 

  53. Ng CK, Carr K, McAinsh MR, Powell B, Hetherington AM . Drought-induced guard cell signal transduction involves sphingosine-1-phosphate Nature 2001 410: 596–599

    Article  CAS  PubMed  Google Scholar 

  54. van Koppen CJ, Meyer zu Heringdorf D, Alemany R, Jakobs KH . Sphingosine kinase-mediated calcium signaling by muscarinic acetylcholine receptors Life Sci 2001 68: 2535–2540

    Article  CAS  PubMed  Google Scholar 

  55. Dickson RC, Lester RL . Yeast sphingolipids Biochim Biophys Acta 1999 1426: 347–357

    Article  CAS  PubMed  Google Scholar 

  56. Mandala SM, Thornton R, Tu Z, Kurtz MB, Nickels J, Broach J, Menzeleev R, Spiegel S . Sphingoid base 1-phosphate phosphatase: a key regulator of sphingolipid metabolism and stress response Proc Natl Acad Sci USA 1998 95: 150–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jenkins GM, Richards A, Wahl T, Mao C, Obeid L, Hannun Y . Involvement of yeast sphingolipids in the heat stress response of Saccharomyces cerevisiae J Biol Chem 1997 272: 32566–32572

    Article  CAS  PubMed  Google Scholar 

  58. Mathes C, Fleig A, Penner R . Calcium release-activated calcium current (ICRAC) is a direct target for sphingosine J Biol Chem 1998 273: 25020–25030

    Article  CAS  PubMed  Google Scholar 

  59. Prieschl EE, Csonga R, Novotny V, Kikuchi GE, Baumruker T . The balance between sphingosine and sphingosine-1-phosphate is decisive for mast cell activation after Fc epsilon receptor I triggering J Exp Med 1999 190: 1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xia P, Gamble JR, Rye KA, Wang L, Hii CST, Cockerill P, Khew-Goodall Y, Bert AG, Barter PJ, Vadas MA . Tumor necrosis factor-α induces adhesion molecule expression through the sphingosine kinase pathway Proc Natl Acad Sci USA 1998 95: 14196–14201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xia P, Vadas MA, Rye KA, Barter PJ, Gamble JR . High density lipoproteins (HDL) interrupt the sphingosine kinase signaling pathway. A possible mechanism for protection against atherosclerosis by HDL J Biol Chem 1999 274: 33143–33147

    Article  CAS  PubMed  Google Scholar 

  62. Ohta H, Sweeney EA, Masamune A, Yatomi Y, Hakomori S, Igarashi Y . Induction of apoptosis by sphingosine in human leukemic HL-60 cells: a possible endogenous modulator of apoptotic DNA fragmentation occurring during phorbol ester-induced differentiation Cancer Res 1995 55: 691–697

    CAS  PubMed  Google Scholar 

  63. Sweeney EA, Inokuchi J, Igarashi Y . Inhibition of sphingolipid induced apoptosis by caspase inhibitors indicates that sphingosine acts in an earlier part of the apoptotic pathway than ceramide FEBS Lett 1998 425: 61–65

    Article  CAS  PubMed  Google Scholar 

  64. Sakakura C, Sweeney EA, Shirahama T, Hakomori S, Igarashi Y . Suppression of bcl-2 gene expression by sphingosine in the apoptosis of human leukemic HL-60 cells during phorbol ester-induced terminal differentiation FEBS Lett 1996 379: 177–180

    Article  CAS  PubMed  Google Scholar 

  65. Nava VE, Cuvillier O, Edsall LC, Kimura K, Milstien S, Gelmann EP, Spiegel S . Sphingosine enhances apoptosis of radiation-resistant prostate cancer cells Cancer Res 2000 60: 4468–4474

    CAS  PubMed  Google Scholar 

  66. Cuvillier O, Levade T . Sphingosine 1-phosphate antagonizes apoptosis of human leukemia cells by inhibiting release of cytochrome c and Smac/DIABLO from mitochondria Blood 2001 98: 2828–2836

    Article  CAS  PubMed  Google Scholar 

  67. Endo K, Igarashi Y, Nisar M, Zhou QH, Hakomori S . Cell membrane signaling as target in cancer therapy: inhibitory effect of N,N-dimethyl and N,N,N-trimethyl sphingosine derivatives on in vitro and in vivo growth of human tumor cells in nude mice Cancer Res 1991 51: 1613–1618

    CAS  PubMed  Google Scholar 

  68. Park YS, Hakomori S, Kawa S, Ruan F, Igarashi Y . Liposomal N,N,N-trimethylsphingosine (TMS) as an inhibitor of B16 melanoma cell growth and metastasis with reduced toxicity and enhanced drug efficacy compared to free TMS: cell membrane signaling as a target in cancer therapy III Cancer Res 1994 54: 2213–2217

    CAS  PubMed  Google Scholar 

  69. Sachs CW, Safa AR, Harrison SD, Fine RL . Partial inhibition of multidrug resistance by safingol is independent of modulation of P-glycoprotein substrate activities and correlated with inhibition of protein kinase C J Biol Chem 1995 270: 26639–26648

    Article  CAS  PubMed  Google Scholar 

  70. Schwartz GK, Ward D, Saltz L, Casper ES, Spiess T, Mullen E, Woodworth J, Venuti R, Zervos P, Storniolo AM, Kelsen DP . A pilot clinical/pharmacological study of the protein kinase C-specific inhibitor safingol alone and in combination with doxorubicin Clin Cancer Res 1997 3: 537–543

    CAS  PubMed  Google Scholar 

  71. Jendiroba DB, Klostergaard J, Keyhani A, Pagliaro L, Freireich EJ . Effective cytotoxicity against human leukemias and chemotherapy-resistant leukemia cell lines by N-N-dimethylsphingosine Leuk Res 2002 26: 301–310

    Article  CAS  PubMed  Google Scholar 

  72. Pallis M . Sphingosine kinase inhibitors in the apoptosis of leukaemia cells Leuk Res 2002 26: 415–416

    Article  PubMed  Google Scholar 

  73. Morita Y, Tilly JL . Oocyte apoptosis: like sand through an hourglass Dev Biol 1999 213: 1–17

    Article  CAS  PubMed  Google Scholar 

  74. Horinouchi K, Erlich S, Perl DP, Ferlinz K, Bisgaier CL, Sandhoff K, Desnick RJ, Stewart CL, Schuchman EH . Acid sphingomyelinase deficient mice: a model of types A and B Niemann–Pick disease Nat Genet 1995 10: 288–293

    Article  CAS  PubMed  Google Scholar 

  75. Morita Y, Manganaro TF, Tao XJ, Martimbeau S, Donahoe PK, Tilly JL . Requirement for phosphatidylinositol-3′-kinase in cytokine-mediated germ cell survival during fetal oogenesis in the mouse Endocrinology 1999 140: 941–949

    Article  CAS  PubMed  Google Scholar 

  76. Wang E, Norred WP, Bacon CW, Riley RT, Merrill AH . Inhibition of sphingolipid biosynthesis by fumonisins J Biol Chem 1991 266: 14486–14490

    CAS  PubMed  Google Scholar 

  77. Bose R, Verheij M, Haimovitz-Friedman A, Scotto K, Fuks Z, Kolesnick R . Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals Cell 1995 82: 405–414

    CAS  PubMed  Google Scholar 

  78. Perez GI, Tao XJ, Tilly JL . Fragmentation and death (aka apoptosis) of ovulated oocytes Mol Hum Reprod 1999 5: 414–420

    Article  CAS  PubMed  Google Scholar 

  79. Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D, Haimovitz-Friedman A, Cordon-Cardo C, Kolesnick R . Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice Science 2001 293: 293–297

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health Grants GM43880 and CA61774 (to SS) and CA85704 and CA42385 (to RK).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spiegel, S., Kolesnick, R. Sphingosine 1-phosphate as a therapeutic agent. Leukemia 16, 1596–1602 (2002). https://doi.org/10.1038/sj.leu.2402611

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402611

Keywords

This article is cited by

Search

Quick links