Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Transduction of acute myeloid leukemia cells with third generation self-inactivating lentiviral vectors expressing CD80 and GM-CSF: effects on proliferation, differentiation, and stimulation of allogeneic and autologous anti-leukemia immune responses

Abstract

Acute myeloid leukemia (AML) patients treated with available therapies achieve remission in approximately 60% of cases, but the long-term event-free survival is less than 30%. Use of immunotherapy during remission is a potential approach to increase survival. We propose to develop cell vaccines by genetic modification of AML cells with CD80, an essential T cell costimulator that is lacking in the majority of AML cases, and GM-CSF, to induce proliferation and activation of professional antigen-presenting cells. Here, we evaluated third generation selfinactivating (SIN) lentiviral vectors, which have the potential advantage of improved safety. CD80 and GM-CSF expression by these vectors was higher than that reported with second generation vectors (Stripecke et al, Blood 2000; 96: 1317–1326). In some cases, endogenous GM-CSF expression by transduced AML cells induced phenotypic changes consistent with the maturation of leukemia blasts into antigen-presenting cells. Further, in all cases studied, GM-CSF expression was associated with higher proliferation and cell viability. Allogeneic and autologous mixed lymphocyte reactions performed with transduced irradiated AML cells expressing CD80 and/or GM-CSF demonstrated that expression of either transgene enhanced T cell activation. These pre-clinical data demonstrate the potential feasibility of third generation SIN vectors for use in AML immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Mayer RJ, Davis RB, Schiffer CA, Berg DT, Powell BL, Schulman P, Omura GA, Moore JO, McIntyre OR, Frei E 3rd . Intensive postremission chemotherapy in adults with acute myeloid leukemia. Cancer and Leukemia Group B N Engl J Med 1994 331: 896–903

    Article  CAS  PubMed  Google Scholar 

  2. Cassileth PA, Harrington DP, Appelbaum FR, Lazarus HM, Rowe JM, Paietta E, Willman C, Hurd DD, Bennett JM, Blume KG, Head DR, Wiernik PH . Chemotherapy compared with autologous or allogeneic bone marrow transplantation in the management of acute myeloid leukemia in first remission N Engl J Med 1998 339: 1649–1656

    Article  CAS  PubMed  Google Scholar 

  3. Kolb HJ, Schattenberg A, Goldman JM, Hertenstein B, Jacobsen N, Arcese W, Ljungman P, Ferrant A, Verdonck L, Niederwieser D . Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia Blood 1995 86: 2041–2050

    CAS  PubMed  Google Scholar 

  4. Collins RH Jr, Shpilberg O, Drobyski WR, Porter DL, Giralt S, Champlin R, Goodman SA, Wolff SN, Hu W, Verfaillie C, List A, Dalton W, Ognoskie N, Chetrit A, Antin JH, Nemunaitis J . Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation J Clin Oncol 1997 15: 433–444

    Article  PubMed  Google Scholar 

  5. Arceci RJ . The potential for antitumor vaccination in acute myelogenous leukemia J Mol Med 1998 76: 80–93

    Article  CAS  PubMed  Google Scholar 

  6. Brenner MK, Pinkel D . Cure of leukemia Semin Hematol 1999 36: 73–83

    CAS  PubMed  Google Scholar 

  7. Dunussi-Joannopoulos K . Malignancy: gene therapy vaccines in acute myeloid leukemia: a need for clinical evaluation Hematol 2000 5: 103–115

    Article  CAS  Google Scholar 

  8. Bruserud O . Acute myelogenous leukemia blasts as accessory cells during T lymphocyte activation: possible implications for future therapeutic strategies Leukemia 1999 13: 1175–1187

    Article  CAS  PubMed  Google Scholar 

  9. Hirano N, Takahashi T, Ohtake S, Hirashima K, Emi N, Saito K, Hirano M, Shinohara K, Takeuchi M, Taketazu F, Tsunoda S, Ogura M, Omine M, Saito T, Yazaki Y, Ueda R, Hirai H . Expression of costimulatory molecules in human leukemias Leukemia 1996 10: 1168–1176

    CAS  PubMed  Google Scholar 

  10. Stripecke R, Cardoso AA, Pepper KA, Skelton DC, Yu XJ, Mascarenhas L, Weinberg KI, Nadler LM, Kohn DB . Lentiviral vectors for efficient delivery of CD80 and granulocyte–macrophage colony-stimulating factor in human acute lymphoblastic leukemia and acute myeloid leukemia cells to induce antileukemic immune responses Blood 2000 96: 1317–1326

    CAS  PubMed  Google Scholar 

  11. Dunussi-Joannopoulos K, Weinstein HJ, Nickerson PW, Strom TB, Burakoff SJ, Croop JM, Arceci RJ . Irradiated B7-1 transduced primary acute myelogenous leukemia (AML) cells can be used as therapeutic vaccines in murine AML Blood 1996 87: 2938–2946

    CAS  PubMed  Google Scholar 

  12. Dunussi-Joannopoulos KDG, Weinstein HJ, Ferrara JL, Bierer BE, Croop JM . Gene immunotherapy in murine acute myeloid leukemia: granulocyte–macrophage colony-stimulating factor tumor cell vaccines elicit more potent antitumor immunity compared with B7 family and other cytokine vaccines Blood 1998 91: 222–230

    CAS  PubMed  Google Scholar 

  13. Matulonis UA, Dosiou C, Lamont C, Freeman GJ, Mauch P, Nadler LM, Griffin JD . Role of B7-1 in mediating an immune response to myeloid leukemia cells Blood 1995 85: 2507–2515

    CAS  PubMed  Google Scholar 

  14. Nakazaki Y, Tani K, Lin ZT, Sumimoto H, Hibino H, Tanabe T, Wu MS, Izawa K, Hase H, Takahashi S, Tojo A, Azuma M, Hamada H, Mori S, Asano S . Vaccine effect of granulocyte–macrophage colony-stimulating factor or CD80 gene-transduced murine hematopoietic tumor cells and their cooperative enhancement of antitumor immunity Gene Ther 1998 5: 1355–1362

    Article  CAS  PubMed  Google Scholar 

  15. Hirano N, Takahashi T, Azuma M, Okumura K, Yazaki Y, Yagita H, Hirai H . Protective and therapeutic immunity against leukemia induced by irradiated B7-1 (CD80)-transduced leukemic cells Hum Gene Ther 1997 8: 1375–1384

    Article  CAS  PubMed  Google Scholar 

  16. Vereecque R, Buffenoir G, Preudhomme C, Hetuin D, Bauters F, Fenaux P, Quesnel B . Gene transfer of GM-CSF, CD80 and CD154 cDNA enhances survival in a murine model of acute leukemia with persistence of a minimal residual disease Gene Ther 2000 7: 1312–1316

    Article  CAS  PubMed  Google Scholar 

  17. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, Trono D . Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery J Virol 1998 72: 9873–9880

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, Naldini L . A third-generation lentivirus vector with a conditional packaging system J Virol 1998 72: 8463–8471

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D . Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo Nat Biotechnol 1997 15: 871–875

    Article  CAS  PubMed  Google Scholar 

  20. Zufferey R, Donello JE, Trono D, Hope TJ . Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors J Virol 1999 73: 2886–2892

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hicks C, Keoshkerian E, Gaudry L, Lindeman R . CD80 (B7-1) expression on human acute myeloid leukaemic cells cultured with GM-CSF, IL-3 and IL-6 Cancer Immunol Immunother 2001 50: 173–180

    Article  CAS  PubMed  Google Scholar 

  22. Sallusto F, Lanzavecchia A . Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha J Exp Med 1994 179: 1109–1118

    Article  CAS  PubMed  Google Scholar 

  23. Choudhury BA, Liang JC, Thomas EK, Flores-Romo L, Xie QS, Agusala K, Sutaria S, Sinha I, Champlin RE, Claxton DF . Dendritic cells derived in vitro from acute myelogenous leukemia cells stimulate autologous, antileukemic T-cell responses Blood 1999 93: 780–786

    CAS  PubMed  Google Scholar 

  24. Oehler L, Berer A, Kollars M, Keil F, Konig M, Waclavicek M, Haas O, Knapp W, Lechner K, Geissler K . Culture requirements for induction of dendritic cell differentiation in acute myeloid leukemia Ann Hematol 2000 79: 355–362

    Article  CAS  PubMed  Google Scholar 

  25. Kohler T, Plettig R, Wetzstein W, Schmitz M, Ritter M, Mohr B, Schaekel U, Ehninger G, Bornhauser M . Cytokine-driven differentiation of blasts from patients with acute myelogenous and lymphoblastic leukemia into dendritic cells Stem Cells 2000 18: 139–147

    Article  CAS  PubMed  Google Scholar 

  26. Brouwer RE, van der Hoorn M, Kluin-Nelemans HC, van Zelderen-Bhola S, Willemze R, Falkenburg JH . The generation of dendritic-like cells with increased allostimulatory function from acute myeloid leukemia cells of various FAB subclasses Hum Immunol 2000 61: 565–574

    Article  CAS  PubMed  Google Scholar 

  27. Just U, Stocking C, Spooncer E, Dexter TM, Ostertag W . Expression of the GM-CSF gene after retroviral transfer in hematopoietic stem cell lines induces synchronous granulocyte–macrophage differentiation Cell 1991 64: 1163–1173

    Article  CAS  PubMed  Google Scholar 

  28. Kitamura T, Tange T, Terasawa T, Chiba S, Kuwaki T, Miyagawa K, Piao YF, Miyazono K, Urabe A, Takaku F . Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin J Cell Physiol 1989 140: 323–334

    Article  CAS  PubMed  Google Scholar 

  29. Mutis T, Schrama E, Melief CJ, Goulmy E . CD80-transfected acute myeloid leukemia cells induce primary allogeneic T-cell responses directed at patient specific minor histocompatibility antigens and leukemia-associated antigens Blood 1998 92: 1677–1684

    CAS  PubMed  Google Scholar 

  30. Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D, Mulligan RC . Vaccination with irradiated tumor cells engineered to secrete murine granulocyte– macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity Proc Natl Acad Sci USA 1993 90: 3539–3543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Soiffer R, Lynch T, Mihm M, Jung K, Rhuda C, Schmollinger JC, Hodi FS, Liebster L, Lam P, Mentzer S, Singer S, Tanabe KK, Cosimi AB, Duda R, Sober A, Bhan A, Daley J, Neuberg D, Parry G, Rokovich J, Richards L, Drayer J, Berns A, Clift S, Dranoff G . Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte–macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma Proc Natl Acad Sci USA 1998 95: 13141–13146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stripecke R, Skelton DC, Gruber T, Afar D, Pattengale PK, Witte ON, Kohn DB . Immune response to Philadelphia chromosome-positive acute lymphoblastic leukemia induced by expression of CD80, interleukin 2, and granulocyte–macrophage colony-stimulating factor Hum Gene Ther 1998 9: 2049–2062

    Article  CAS  PubMed  Google Scholar 

  33. Stripecke R, Skelton DC, Pattengale PK, Shimada H, Kohn DB . Combination of CD80 and granulocyte–macrophage colony-stimulating factor coexpression by a leukemia cell vaccine: preclinical studies in a murine model recapitulating Philadelphia chromosome-positive acute lymphoblastic leukemia Hum Gene Ther 1999 10: 2109–2122

    Article  CAS  PubMed  Google Scholar 

  34. Matulonis U, Dosiou C, Freeman G, Lamont C, Mauch P, Nadler LM, Griffin JD . B7-1 is superior to B7-2 costimulation in the induction and maintenance of T cell-mediated antileukemia immunity. Further evidence that B7-1 and B7-2 are functionally distinct J Immunol 1996 156: 1126–1131

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Alexandra Vieira for technical assistance, Dr Mark Hechinger for the flow cytometry analyses, Dr Luigi Naldini for providing us with the third generation SIN lentiviral system and Dr Sue Ellen Martin, Moli Chen and Byron Espina for assisting in establishment of the Leukemia Cell Bank. RS was supported by a Special Fellow Award from the Leukemia and Lymphoma Society (3002-00), by a Howard Temin Award from the National Cancer Institute (K01-CA87864-01), by a short-term habilitation fellowship from the Deutsche Forschungsgemeinschaft, by a pilot grant from the American Cancer Society (IRG 58-007-42) and a research grant from Concern Foundation. VP was supported by a pilot grant from the American Cancer Society (IRG-58-007-42).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koya, R., Kasahara, N., Pullarkat, V. et al. Transduction of acute myeloid leukemia cells with third generation self-inactivating lentiviral vectors expressing CD80 and GM-CSF: effects on proliferation, differentiation, and stimulation of allogeneic and autologous anti-leukemia immune responses. Leukemia 16, 1645–1654 (2002). https://doi.org/10.1038/sj.leu.2402582

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402582

Keywords

This article is cited by

Search

Quick links