Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Identification of precursors of leukemic dendritic cells differentiated from patients with acute myeloid leukemia

Abstract

Dendritic cells (DC) can facilitate immune responses that might help in the induction of effective antitumor T cell responses. We reported previously that leukemic blasts from selected patients with acute myeloid leukemia (AML) were able to differentiate in vitro into cells with mature DC features. However, despite the use of a wide variety of cytokine combinations, leukemic DC could not be obtained from all AML patients. In this study, we investigated in a wide range of AML patients (n = 30), the nature and functional characteristics of the blast compartment that can be induced to acquire DC features in vitro. Our results demonstrate that leukemic DC generated in the presence of GM-CSF, IL-4 and matured with CD40L, are composed of two major subsets: DC derived from CD14+ leukemic cells and leukemic DC derived from in vivo expanded circulating blood myeloid DC (MDC). Leukemic DC of both subsets exhibited DC morphology, had a phenotype of mature DC, and could induce a potent proliferative response of naive CD4+ T cells. Moreover, both subsets produced large amounts of IL-12p70 and leukemic CD14+-derived DC could induce a potent Th1 response. These results can be considered as a prerequisite before the design of vaccine immunotherapy protocols for the adjuvant treatment of AML patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Antin JH . Graft-versus-leukemia: no longer an epiphenomenon Blood 1993 82: 2273–2277

    CAS  PubMed  Google Scholar 

  2. Powles RL, Russell J, Lister TA, Oliver T, Whitehouse JM, Malpas J, Chapuis B, Crowther D, Alexander P . Immunotherapy for acute myelogenous leukaemia: a controlled clinical study 2 1/2 years after entry of the last patient Br J Cancer 1977 35: 265–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kolb HJ, Schattenberg A, Goldman JM, Hertenstein B, Jacobsen N, Arcese W, Ljungman P, Ferrant A, Verdonck L, Niederwieser D . Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia Blood 1995 86: 2041–2050

    CAS  PubMed  Google Scholar 

  4. Falkenburg JH, Smit WM, Willemze R . Cytotoxic T-lymphocyte (CTL) responses against acute or chronic myeloid leukemia Immunol Rev 1997 157: 223–230

    Article  CAS  PubMed  Google Scholar 

  5. Banchereau J, Steinman RM . Dendritic cells and the control of immunity Nature 1998 392: 245–252

    Article  CAS  PubMed  Google Scholar 

  6. Charbonnier A, Gaugler B, Sainty D, Lafage-Pochitaloff M, Olive D . Human acute myeloblastic leukemia cells differentiate in vitro into mature dendritic cells and induce the differentiation of cytotoxic T cells against autologous leukemias Eur J Immunol 1999 29: 2567–2578

    Article  CAS  PubMed  Google Scholar 

  7. Choudhury A, Gajewski JL, Liang JC, Popat U, Claxton DF, Kliche KO, Andreeff M, Champlin RE . Use of leukemic dendritic cells for the generation of antileukemic cellular cytotoxicity against Philadelphia chromosome-positive chronic myelogenous leukemia Blood 1997 89: 1133–1142

    CAS  PubMed  Google Scholar 

  8. Choudhury BA, Liang JC, Thomas EK, Flores-Romo L, Xie QS, Agusala K, Sutaria S, Sinha I, Champlin RE, Claxton DF . Dendritic cells derived in vitro from acute myelogenous leukemia cells stimulate autologous, antileukemic T-cell responses Blood 1999 93: 780–786

    CAS  PubMed  Google Scholar 

  9. Cignetti A, Bryant E, Allione B, Vitale A, Foa R, Cheever MA . CD34(+) acute myeloid and lymphoid leukemic blasts can be induced to differentiate into dendritic cells Blood 1999 94: 2048–2055

    CAS  PubMed  Google Scholar 

  10. Robinson SP, English N, Jaju R, Kearney L, Knight SC, Reid CD . The in-vitro generation of dendritic cells from blast cells in acute leukaemia Br J Haematol 1998 103: 763–771

    CAS  PubMed  Google Scholar 

  11. Smit WM, Rijnbeek M, van Bergen CA, de Paus RA, Vervenne HA, van de Keur M, Willemze R, Falkenburg JH . Generation of dendritic cells expressing bcr-abl from CD34-positive chronic myeloid leukemia precursor cells Hum Immunol 1997 53: 216–223

    Article  CAS  PubMed  Google Scholar 

  12. Brouwer RE, van der Hoorn M, Kluin-Nelemans HC, van Zelderen-Bhola S, Willemze R, Falkenburg JH . The generation of dendritic-like cells with increased allostimulatory function from acute myeloid leukemia cells of various FAB subclasses Hum Immunol 2000 61: 565–574

    Article  CAS  PubMed  Google Scholar 

  13. Harrison BD, Adams JA, Briggs M, Brereton ML, Yin JA . Stimulation of autologous proliferative and cytotoxic T-cell responses by leukemic dendritic cells derived from blast cells in acute myeloid leukemia Blood 2001 97: 2764–2771

    Article  CAS  PubMed  Google Scholar 

  14. Woiciechowsky A, Regn S, Kolb HJ, Roskrow M . Leukemic dendritic cells generated in the presence of FLT3 ligand have the capacity to stimulate an autologous leukemia-specific cytotoxic T cell response from patients with acute myeloid leukemia Leukemia 2001 15: 246–255

    Article  CAS  PubMed  Google Scholar 

  15. Mohty M, Jarrossay D, Lafage-Pochitaloff M, Zandotti C, Briere F, de Lamballeri XN, Isnardon D, Sainty D, Olive D, Gaugler B . Circulating blood dendritic cells from myeloid leukemia patients display quantitative and cytogenetic abnormalities as well as functional impairment Blood 2001 98: 3750–3756

    Article  CAS  PubMed  Google Scholar 

  16. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, Sultan C . Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French–American–British Cooperative Group Ann Intern Med 1985 103: 620–625

    Article  CAS  PubMed  Google Scholar 

  17. Grouard G, Rissoan MC, Filgueira L, Durand I, Banchereau J, Liu YJ . The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand J Exp Med 1997 185: 1101–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Renard N, Lafage-Pochitaloff M, Durand I, Duvert V, Coignet L, Banchereau J, Saeland S . Demonstration of functional CD40 in B-lineage acute lymphoblastic leukemia cells in response to T-cell CD40 ligand Blood 1996 87: 5162–5170

    CAS  PubMed  Google Scholar 

  19. Sallusto F, Lanzavecchia A . Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha J Exp Med 1994 179: 1109–1118

    Article  CAS  PubMed  Google Scholar 

  20. Zhou LJ, Tedder TF . Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily J Immunol 1995 154: 3821–3835

    CAS  PubMed  Google Scholar 

  21. Rissoan MC, Soumelis V, Kadowaki N, Grouard G, Briere F, de Waal Malefyt R, Liu YJ . Reciprocal control of T helper cell and dendritic cell differentiation Science 1999 283: 1183–1186

    Article  CAS  PubMed  Google Scholar 

  22. Caux C, Dezutter-Dambuyant C, Schmitt D, Banchereau J . GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells Nature 1992 360: 258–261

    Article  CAS  PubMed  Google Scholar 

  23. Eibl B, Ebner S, Duba C, Bock G, Romani N, Erdel M, Gachter A, Niederwieser D, Schuler G . Dendritic cells generated from blood precursors of chronic myelogenous leukemia patients carry the Philadelphia translocation and can induce a CML-specific primary cytotoxic T-cell response Genes Chromosomes Cancer 1997 20: 215–223

    Article  CAS  PubMed  Google Scholar 

  24. Coleman S, Throp D, Fisher J, Bailey-Wood R, Lim SH . Cytokine enhancement of immunogenicity in chronic myeloid leukaemia Leukemia 1997 11: 2055–2059

    Article  CAS  PubMed  Google Scholar 

  25. Verfaillie CM, Miller WJ, Boylan K, McGlave PB . Selection of benign primitive hematopoietic progenitors in chronic myelogenous leukemia on the basis of HLA-DR antigen expression Blood 1992 79: 1003–1010

    CAS  PubMed  Google Scholar 

  26. Brendel C, Neubauer A . Characteristics and analysis of normal and leukemic stem cells: current concepts and future directions Leukemia 2000 14: 1711–1717

    Article  CAS  PubMed  Google Scholar 

  27. Matulonis U, Dosiou C, Freeman G, Lamont C, Mauch P, Nadler LM, Griffin JD . B7-1 is superior to B7-2 costimulation in the induction and maintenance of T cell-mediated antileukemia immunity. Further evidence that B7-1 and B7-2 are functionally distinct J Immunol 1996 156: 1126–1131

    CAS  PubMed  Google Scholar 

  28. Mutis T, Schrama E, Melief CJ, Goulmy E . CD80-Transfected acute myeloid leukemia cells induce primary allogeneic T-cell responses directed at patient specific minor histocompatibility antigens and leukemia-associated antigens Blood 1998 92: 1677–1684

    CAS  PubMed  Google Scholar 

  29. Boyer MW, Vallera DA, Taylor PA, Gray GS, Katsanis E, Gorden K, Orchard PJ, Blazar BR . The role of B7 costimulation by murine acute myeloid leukemia in the generation and function of a CD8+ T-cell line with potent in vivo graft-versus-leukemia properties Blood 1997 89: 3477–3485

    CAS  PubMed  Google Scholar 

  30. Costello RT, Mallet F, Sainty D, Maraninchi D, Gastaut JA, Olive D . Regulation of CD80/B7-1 and CD86/B7-2 molecule expression in human primary acute myeloid leukemia and their role in allogenic immune recognition Eur J Immunol 1998 28: 90–103

    Article  CAS  PubMed  Google Scholar 

  31. Sallusto F, Lanzavecchia A . Understanding dendritic cell and T-lymphocyte traffic through the analysis of chemokine receptor expression Immunol Rev 2000 177: 134–140

    Article  CAS  PubMed  Google Scholar 

  32. Mosmann TR, Sad S . The expanding universe of T-cell subsets: Th1, Th2 and more Immunol Today 1996 17: 138–146

    Article  CAS  PubMed  Google Scholar 

  33. Shurin MR, Lu L, Kalinski P, Stewart-Akers AM, Lotze MT . Th1/Th2 balance in cancer, transplantation and pregnancy Springer Semin Immunopathol 1999 21: 339–359

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MM was supported by a grant from the ‘Fondation de France’, Paris, France and from the SFGM-TC, Lyon, France. We thank C Mawas (INSERM U119) and D Maraninchi (Institut Paoli-Calmettes) for helpful discussions. We thank D Jarrossay, J Benfares and J Wolfers (Immunotech, Beckman-Coulter, Marseille) for kindly providing the ILT3 mAb. We also thank R Galindeau for assistance in cell sorting; S Just-Landi and N Baratier for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohty, M., Isnardon, D., Blaise, D. et al. Identification of precursors of leukemic dendritic cells differentiated from patients with acute myeloid leukemia. Leukemia 16, 2267–2274 (2002). https://doi.org/10.1038/sj.leu.2402706

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402706

Keywords

This article is cited by

Search

Quick links