Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Murine stromal cells producing hyper-interleukin-6 and Flt3 ligand support expansion of early human hematopoietic progenitor cells without need of exogenous growth factors

Abstract

Expansion of primitive hematopoietic progenitor cells (HPC) is a major challenge in stem cell biology. Stimulation by growth factors (GF) is essential for proliferation of HPC, while the role of stromal cell coculture for maintenance of progenitor/stem cell potential is unclear. We evaluated the potential of a murine stromal cell layer providing hematopoietic GF to support expansion of human CD34+ cells. Murine MS-5 cells were transfected with the cDNA encoding huFlt3 ligand and the interleukin6/sinterleukin-6R fusion protein hyper-IL-6. Expansion of CFC and week6 CAFC was at least as efficient in transfected clones compared to control cocultures supported with exogenous GF. Cell numbers reached 17.5- to 62.3- (day 14) and 17.4- to 92.4-fold (day 21) of input cells. Expansion of CFU-GM/Mix was 4.0- to 12.8-fold (day 14) and 4.9- to 11.7-fold (day 21). Primitive week6 CAFC were expanded up to 6.5-fold (day 14) and 6.2-fold (day 21) without exogenous GF. When direct contact of HPC and stromal cells was inhibited, a loss of CFC and much more of CAFC potential was observed with unaffected overall cell proliferation. Here, we show the generation of GF producing murine stromal cells which efficiently support early hematopoiesis without exogenous GF. Direct stromal cell–HPC contact is advantageous for maintenance of differentiation potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ogawa M . Differentiation and proliferation of hematopoietic stem cells Blood 1993 81: 2844–2853

    CAS  PubMed  Google Scholar 

  2. Lemischka IR . Microenvironmental regulation of hematopoietic stem cells Stem Cells 1997 15: 63–68

    Article  PubMed  Google Scholar 

  3. Moore KA, Ema H, Lemischka IR . In vitro maintenance of highly purified, transplantable hematopoietic stem cells Blood 1997 94: 4011–4016

    CAS  Google Scholar 

  4. Weiss L, Geduldig U . Barrier cells: stromal regulation of hematopoiesis and blood cell release in normal and stressed murine bone marrow Blood 1991 78: 975–990

    CAS  PubMed  Google Scholar 

  5. Dorshkind K . Regulation of hemopoiesis by stromal cells and their products Annu Rev Immunol 1990 8: 111–137

    Article  CAS  PubMed  Google Scholar 

  6. Breems D, Blokland EAW, Siebel KE, Mayen AEM, Engels LJA, Ploemacher RE . Stroma-contact prevents loss of hematopoietic stem cell quality during ex vivo expansion of CD34+ mobilized blood stem cells Blood 1998 91: 111–117

    CAS  PubMed  Google Scholar 

  7. Bennaceur-Griscelli A, Tourino C, Izac B, Vainchenker W, Coulombel L . Murine stromal cells counteract the loss of long-term culture-initiating cell potential induced by cytokines in CD34+CD38low/neg human bone marrow cells Blood 1999 94: 529–538

    CAS  PubMed  Google Scholar 

  8. Verfaillie C, Catanzano P . Direct contact with stroma inhibits proliferation of human long-term culture initiating cells Leukemia 1996 10: 498–504

    CAS  PubMed  Google Scholar 

  9. Roberts R, Gallagher J, Spooncer E, Allen TD, Bloomfield F, Dexter RM . Heparan sulphate bound growth factors: a mechanism for stromal cell mediated haemopoiesis Nature 1988 332: 376–378

    Article  CAS  PubMed  Google Scholar 

  10. Gupta P, Oegema TR, Brazil JJ, Dudek AZ, Slungaard A, Verfaillie CM . Human LTC-IC can be maintained for at least 5 weeks in vitro when interleukin-3 and a single chemokine are combined with O-sulfated heparan sulfates: requirement for optimal binding interactions of heparan sulfate with early-acting cytokines and matrix proteins Blood 2000 95: 147–155

    CAS  PubMed  Google Scholar 

  11. Lyman SD, Jakobsen SEW . c-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities Blood 1998 91: 1101–1134

    CAS  PubMed  Google Scholar 

  12. Bernat A, Kopf M, Kulbacki R, Weich N, Koehler G, Gutierrez-Ramos JC . Interleukin-6 is required in vivo for the regulation of stem cells and committed progenitors of the hematopoietic system Immunity 1994 1: 725–731

    Article  Google Scholar 

  13. Luens KM, Travis MA, Chen BP, Hill BL, Scollay R, Murray LJ . Thrombopoietin, kit ligand and flk2/flt3 ligand together induce increased numbers of primitive hematopoietic progenitors from CD34+Thy1-lin− cells with preserved ability to engraft SCID-hu bone Blood 1998 91: 1206–1215

    CAS  PubMed  Google Scholar 

  14. Matsanuga T, Kato T, Miyazaki H, Ogawa M . Thrombopoietin promotes survival of murine hematopoietic long-term reconstituting cells: comparison with the effects of flk2/flt3 ligand and interleukin-6 Blood 1998 92: 452–461

    Google Scholar 

  15. Kimura T, Sakabe H, Tanimukai S, Abe T, Urata Y, Yasukawa K, Okano A, Taga T, Sugiyama H, Kishimoto T, Sonoda Y . Simultanous activation of signals through gp130, c-kit, and interleukin-3 receptor promotes trilineage blood cell production in the absence of terminally acting lineage-specific factors Blood 1997 90: 4767–4778

    CAS  PubMed  Google Scholar 

  16. Ebihara Y, Tsuji K, Lyman SD, Sui Y, Yoshida M, Muraoka K, Tanaka R, Nakahata T . Synergistic action of Flt3 and gp130 signalings in human hematopoiesis Blood 1997 90: 4363–4368

    CAS  PubMed  Google Scholar 

  17. Peters M, Müller AM, Rose-John S . Interleukin-6 and soluble interleukin-6 receptor: direct stimulation of gp130 and hematopoiesis Blood 1998 92: 3495–3504

    CAS  PubMed  Google Scholar 

  18. Tajima S, Tsuji K, Ebihara Y, Sui X, Tanaka R, Muraoka K, Yoshida M, Yamada K, Yasukawa K, Taga T, Kishimoto T, Nakahata T . Analysis of interleukin-6 receptor and gp130 expression and proliferative capability of human CD34+ cells J Exp Med 1996 184: 1357–1364

    Article  CAS  PubMed  Google Scholar 

  19. Fischer M, Goldschmitt J, Peschel C, Brakenhoff JP, Kallen KJ, Wollmer A, Grotzinger J, Rose-John S . A bioactive designer cytokine for human hematopoietic progenitor cell expansion Nat Biotechnol 1997 15: 142–145

    Article  CAS  PubMed  Google Scholar 

  20. Kollet O, Aviram R, Chebath J, Ben-Hur H, Nagler A, Shultz L, Revel M, Lapidot T . The soluble interleukin-6 (IL-6)receptor/IL-6 fusion protein enhances in vitro maintenance and proliferation of human CD34+38−/low cells capable of repopulating severe combined immunodeficiency mice Blood 1999 94: 923–931

    CAS  PubMed  Google Scholar 

  21. Rappold I, Watt SM, Kusadasi N, Rose-John S, Hatzfeld J, Ploemacher RE . Gp130-signaling synergizes with FL and TPO for the long-term expansion of cord blood progenitors Leukemia 1999 13: 2036–2048

    Article  CAS  PubMed  Google Scholar 

  22. Götze KS, Keller U, Rose-John S, Peschel C . gp130-Stimulating designer cytokine H-interleukin-6 synergizes with murine stroma for long-term survival of primitive human hematopoietic progenitor cells Exp Hematol 2001 29: 822–832

    Article  PubMed  Google Scholar 

  23. Itoh K, Tezuka H, Sakoda H, Konno M, Nagata K, Uchiyama T, Uchino H, Mori KJ . Reproducible establishment of hemopoietic supportive stromal cell lines from murine bone marrow Exp Hematol 1989 17: 145–153

    CAS  PubMed  Google Scholar 

  24. Sutherland HJ, Eaves CJ, Landsdorp PM, Thacker JD, Hogge DE . Differential regulation of primitive human hematopoietic cells in long-term culutures maintained on genetically engineered murine stroma cells Blood 1991 78: 666–672

    CAS  PubMed  Google Scholar 

  25. Fujisaki T, Berger MG, Rose-John S, Eaves CJ . Rapid differentiation of a rare subset of adult human Lin-CD34−CD38− cells stimulated by multiple growth factors in vitro Blood 1999 94: 1926–1932

    CAS  PubMed  Google Scholar 

  26. Kusadasi N, van Soest PL, Mayen AE, Koevoet JLM, Ploemacher RE . Successful short-term ex vivo expansion of NOD/SCID repopulating ability and CAFC week 6 from umbilical cord blood Leukemia 2000 14: 1944–1953

    Article  CAS  PubMed  Google Scholar 

  27. Shih C-C, Hu MC-T, Hu J, Medeiros J, Forman SJ . Long-term ex vivo maintenance and expansion of transplantable human hematopoietic stem cells Blood 1999 94: 1623–1636

    CAS  PubMed  Google Scholar 

  28. Rakemann T, Niehof M, Kubicka S, Fischer M, Manns MP, Rose-John S, Trautwein C . The designer cytokine hyper-interleukin-6 is a potent activator of STAT3-dependent gene transcrition in vivo and in vitro J Biol Chem 1999 274: 1257–1266

    Article  CAS  PubMed  Google Scholar 

  29. Oh JW, Van Wagoner NJ, Rose-John S, Benveniste EN . Role of soluble IL-6 receptor in inhibition of VCAM-1 gene expression J Immunol 1998 161: 4992–4999

    CAS  PubMed  Google Scholar 

  30. Punzel M, Gupta P, Roodell M, Mortari F, Verfaillie CM . Factor(s) secreted by AFT024 fetal liver cells following stimulation with human cytokines are important for human LTC-IC growth Leukemia 1999 13: 1079–1784

    Article  CAS  PubMed  Google Scholar 

  31. Toksoz D, Zsebo KM, Smith KA, Hu S, Brankow D, Suggs SV, Martin FH, Williams DA . Support of human hematopoiesis in long-term cultures by murine stromal cells selectively expressing the membrane-bound and secreted forms of the human homolog of the steel gene product, stem cell factor Proc Natl Acad Sci USA 1992 89: 7350–7354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Svenja Schewe and Monika Wimmer for expert technical assistance in cell culture, Christian Meyer zum Büschenfelde for help in the plasmid construction, Rebecca Grundler for providing the 32DFlt3 cells and Robert Oostendorp for critical discussion and review of the manuscript. This work was supported by a grant from the Technical University of Munich (KKF 8732567) and a grant from the Deutsche Forschungsgemeinschaft (SFB 456).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keller, U., Götze, K., Duyster, J. et al. Murine stromal cells producing hyper-interleukin-6 and Flt3 ligand support expansion of early human hematopoietic progenitor cells without need of exogenous growth factors. Leukemia 16, 2122–2128 (2002). https://doi.org/10.1038/sj.leu.2402660

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402660

Keywords

Search

Quick links