Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Normal Hemopoiesis and Stemcellology

CDP/Cut DNA binding activity is down-modulated in granulocytes, macrophages and erythrocytes but remains elevated in differentiating megakaryocytes

Abstract

DNA binding by the CCAAT-displacement protein, the mammalian homologue of the Drosophila melanogaster Cut protein, was previously found to increase sharply in S phase, suggesting a role for CDP/Cut in cell cycle progression. Genetic studies in Drosophilaindicated that cut plays an important role in cell-type specification in several tissues. In the present study, we have investigated CDP/Cut expression and activity in a panel of multipotent hematopoietic cell lines that can be induced to differentiate in vitro into distinct cell types. While CDP/Cut DNA binding activity declined in the pathways leading to macrophages, granulocytes and erythrocytes, it remained elevated in megakaryocytes. CDP/Cut was also highly expressed in primary megakaryocytes isolated from mouse, and some DNA binding activity could be detected. Altogether, these results raise the possibility that CDP/Cut may be a determinant of cell type identity downstream of the myelo-erythroid precursor cell. Another possibility, which does not exclude a role in lineage identity, is that CDP/Cut activity in megakaryocytes is linked to endomitosis. Indeed, elevated CDP/Cut activity in differentiating megakaryocytes and during the S phase of the cell cycle suggests that it may be required for DNA replication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Andres V, Nadal-Ginard B, Mahdavi V . Clox, a mammalian homeobox gene related to Drosophila cut, encodes DNA-binding regulatory proteins differentially expressed during development Development 1992 116: 321–334

    CAS  PubMed  Google Scholar 

  2. Neufeld EJ, Skalnik DG, Lievens PM, Orkin SH . Human CCAAT displacement protein is homologous to the Drosophila homeoprotein, cut Nat Genet 1992 1: 50–55

    Article  CAS  PubMed  Google Scholar 

  3. Dufort D, Nepveu A . The human cut homeodomain protein represses transcription from the c-mye promoter Mol Cell Biol 1994 14: 4251–4257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yoon SO, Chikaraishi DM . Isolation of two E-box binding factors that interact with the rat tyrosine hydroxylase enhancer J Biol Chem 1994 269: 18453–18462

    CAS  PubMed  Google Scholar 

  5. Quaggin SE, Vandenheuvel GB, Golden K, Bodmer R, Igarashi P . Primary structure, neural-specific expression, and chromosomal localization of Cux-2, a second murine homeobox gene related to Drosophila Cut J Biol Chem 1996 271: 22624–22634

    Article  CAS  PubMed  Google Scholar 

  6. Valarche I, Tissier-Seta JP, Hirsch MR, Martinez S, Goridis C, Brunet JF . The mouse homeodomain protein Phox2 regulates Ncam promoter activity in concert with Cux/CDP and is a putative determinant of neurotransmitter phenotype Development 1993 119: 881–896

    CAS  PubMed  Google Scholar 

  7. Andres V, Chiara MD, Mahdavi V . A new bipartite DNA-binding domain: cooperative interaction between the cut repeat and homeo domain of the cut homeo proteins Genes Dev 1994 8: 245–257

    Article  CAS  PubMed  Google Scholar 

  8. Aufiero B, Neufeld EJ, Orkin SH . Sequence-specific DNA binding of individual Cut repeats of the human CCAAT displacement/Cut homeodomain protein Proc Natl Acad Sci USA 1994 91: 7757–7761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Harada R, Dufort D, Denis-Larose C, Nepveu A . Conserved cut repeats in the human cut homeodomain protein function as DNA binding domains J Biol Chem 1994 269: 2062–2067

    CAS  PubMed  Google Scholar 

  10. Harada R, Berube G, Tamplin OJ, Denis-Larose C, Nepveu A . DNA-binding specificity of the cut repeats from the human cut-like protein Mol Cell Biol 1995 15: 129–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Coqueret O, Berube G, Nepveu A . The mammalian Cut homeodomain protein functions as a cell-cycle-dependent transcriptional repressor which downmodulates P21 (Waf1/Cip1/Sdi1) in S phase EMBO J 1998 17: 4680–4694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Coqueret O, Martin N, Berube G, Rabbat M, Litchfield DW, Nepveu A . DNA binding by cut homeodomain proteins is down-modulated by casein kinase II J Biol Chem 1998 273: 2561–2566

    Article  CAS  PubMed  Google Scholar 

  13. Coqueret O, Berube G, Nepveu A . DNA binding by Cut homeodomain proteins is down-modulated by protein kinase C J Biol Chem 1996 271: 24862–24868

    Article  CAS  PubMed  Google Scholar 

  14. Lievens PMJ, Donady JJ, Tufarelli C, Neufeld EJ . Repressor activity of CCAAT displacement protein in HL-60 myeloid leukemia cells J Biol Chem 1995 270: 12745–12750

    Article  CAS  PubMed  Google Scholar 

  15. Skalnik DG, Strauss EC, Orkin SH . CCAAT displacement protein as a repressor of the myelomonocytic-specific gp91-phox gene promoter J Biol Chem 1991 266: 16736–16744

    CAS  PubMed  Google Scholar 

  16. Superti-Furga G, Barberis A, Schreiber E, Busslinger M . The protein CDP, but not CP1, footprints on the CCAAT region of the g-globulin gene in unfractionated B-cell extracts Biochim Biophys Acta 1989 1007: 237–242

    Article  CAS  PubMed  Google Scholar 

  17. Mailly F, Berube G, Harada R, Mao PL, Phillips S, Nepveu A . The human cut homeodomain protein can repress gene expression by two distinct mechanisms: active repression and competition for binding site occupancy Mol Cell Biol 1996 16: 5346–5357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li S, Moy L, Pittman N et al. Transcriptional repression of the cystic fibrosis transmembrane conductance regulator gene, mediated by CCAAT displacement protein/cut homolog, is associated with histone deacetylation J Biol Chem 1999 274: 7803–7815

    Article  CAS  PubMed  Google Scholar 

  19. Vanwijnen AJ, Vangurp MF, Deridder MC et al. Cdp/Cut is the DNA-binding subunit of histone gene transcription factor Hinf-D – a mechanism for gene regulation at the G(I)/S phase cell cycle transition point independent of transcription factor E2f Proc Natl Acad Sci USA 1996 93: 11516–11521

    Article  CAS  Google Scholar 

  20. van Wijnen AJ, Cooper C, Odgren P et al. Cell cycle-dependent modifications in activities of pRb-related tumor suppressors and proliferation-specific CDP/cut homeodomain factors in murine hematopoietic progenitor cells J Cell Biochem 1997 66: 512–523

    Article  CAS  PubMed  Google Scholar 

  21. Aziz F, Vanwijnen AJ, Vaughan PS et al. The integrated activities of Irf-2 (Hinf-M), Cdp/Cut (Hinf-D) and H4tf-2 (Hinf-P) regulate transcription of a cell cycle controlled human histone H4 gene – mechanistic differences between distinct H4 genes Mol Biol Rep 1998 25: 1–12

    Article  CAS  PubMed  Google Scholar 

  22. Jack J, Dorsett D, Delotto Y, Liu S . Expression of the cut locus in the Drosophila wing margin is required for cell type specification and is regulated by a distant enhancer Development 1991 113: 735–747

    CAS  PubMed  Google Scholar 

  23. Jack J, DeLotto Y . Effect of wing scalloping mutations on cut expression and sense organ differentiation in the Drosophila wing margin Genetics 1992 131: 353–363

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu S, McLeod E, Jack J . Four distinct regulatory regions of the cut locus and their effect on cell type specification in Drosophila Genetics 1991 127: 151–159

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu S, Jack J . Regulatory interactions and role in cell type specification of the Malpighian tubules by the cut, Kruppel, and caudal genes of Drosophila Dev Biol 1992 150: 133–143

    Article  CAS  PubMed  Google Scholar 

  26. Bodmer R, Barbel S, Shepherd S, Jack JW, Jan LY, Jan YN . Transformation of sensory organs by mutations of the cut locus of D. melanogaster Cell 1987 51: 293–307

    Article  CAS  PubMed  Google Scholar 

  27. Blochlinger K, Jan LY, Jan YN . Transformation of sensory organ identity by ectopic expression of Cut in Drosophila Genes Dev 1991 5: 1124–1135

    Article  CAS  PubMed  Google Scholar 

  28. Blochlinger K, Jan LY, Jan YN . Postembryonic patterns of expression of cut, a locus regulating sensory organ identity in Drosophila Development 1993 117: 441–450

    CAS  PubMed  Google Scholar 

  29. Ludlow C, Choy R, Blochlinger K . Functional analysis of Drosophila and mammalian Cut proteins in flies Dev Biol 1996 178: 149–159

    Article  CAS  PubMed  Google Scholar 

  30. Heuvel GBV, Bodmer R, McConnell KR, Nagami GT, Igarashi P . Expression of a cut-related homeobox gene in developing and polycystic mouse kidney Kidney Int 1996 50: 453–461

    Article  Google Scholar 

  31. Sahai J, Louie SG . Overview of the immune and hematopoietic systems Am J Hosp Pharm 1993 50: (Suppl. 3) S4–9

    CAS  PubMed  Google Scholar 

  32. Ogawa M . Differentiation and proliferation of hematopoietic stem cells Blood 1993 81: 2844–2853

    CAS  PubMed  Google Scholar 

  33. Prandini MH, Martin F, Thevenon D, Uzan G . The tissue-specific transcriptional regulation of the megakaryocytic glycoprotein IIb gene is controlled by interactions between a repressor and positive cis-acting elements Blood 1996 88: 2062–2070

    CAS  PubMed  Google Scholar 

  34. Aird WC, Parvin JD, Sharp PA, Rosenberg RD . The interaction of GATA-binding proteins and basal transcription factors with GATA box-containing core promoters. A model of tissue-specific gene expression J Biol Chem 1994 269: 883–889

    CAS  PubMed  Google Scholar 

  35. Martin F, Prandini MH, Thevenon D, Marguerie G, Uzan G . The transcription factor GATA-1 regulates the promoter activity of the platelet glycoprotein IIb gene J Biol Chem 1993 268: 21606–21612

    CAS  PubMed  Google Scholar 

  36. Mouthon MA, Bernard O, Mitjavila MT, Romeo PH, Vainchenker W, Mathieu-Mahul D . Expression of tal-1 and GATA-binding proteins during human hematopoiesis Blood 1993 81: 647–655

    CAS  PubMed  Google Scholar 

  37. Lemarchandel V, Ghysdael J, Mignotte V, Rahuel C, Romeo PH . GATA and Ets cis-acting sequences mediate megakaryocyte-specific expression Mol Cell Biol 1993 13: 668–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Block KL, Ravid K, Phung QH, Poncz M . Characterization of regulatory elements in the 5′-flanking region of the rat GPIIb gene by studies in a primary rat marrow culture system Blood 1994 84: 3385–3393

    CAS  PubMed  Google Scholar 

  39. Hashimoto Y, Ware J . Identification of essential GATA and Ets binding motifs within the promoter of the platelet glycoprotein Ib alpha gene J Biol Chem 1995 270: 24532–24539

    Article  CAS  PubMed  Google Scholar 

  40. Quesenberry PJ, Iscove NN, Cooper C et al. Expression of basic helix–loop–helix transcription factors in explant hematopoietic progenitors J Cell Biochem 1996 61: 478–488

    Article  CAS  PubMed  Google Scholar 

  41. Zhang C, Gadue P, Scott E, Atchison M, Poncz M . Activation of the megakaryocyte-specific gene platelet basic protein (PBP) by the Ets family factor PU.1 J Biol Chem 1997 272: 26236–26246

    Article  CAS  PubMed  Google Scholar 

  42. Doubeikovski A, Uzan G, Doubeikovski Z et al. Thrombopoietin-induced expression of the glycoprotein IIb gene involves the transcription factor PU.1/Spi-1 in UT7-Mpl cells J Biol Chem 1997 272: 24300–24307

    Article  CAS  PubMed  Google Scholar 

  43. Lecine P, Blank V, Shivdasani R . Characterization of the hematopoietic transcription factor NF-E2 in primary murine megakaryocytes J Biol Chem 1998 273: 7572–7578

    Article  CAS  PubMed  Google Scholar 

  44. Nagata Y, Nagahisa H, Nagasawa T, Todokoro K . Regulation of megakaryocytopoiesis by thrombopoietin and stromal cells Leukemia 1997 11: (Suppl. 3) 435–438

    PubMed  Google Scholar 

  45. McDevitt MA, Shivdasani RA, Fujiwara Y, Yang H, Orkin SH . A ‘knockdown’ mutation created by cis-element gene targeting reveals the dependence of erythroid cell maturation on the level of transcription factor GATA-1 Proc Natl Acad Sci USA 1997 94: 6781–6785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shivdasani RA, Fujiwara Y, McDevitt MA, Orkin SH . A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development EMBO J 1997 16: 3965–3973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pevny L, Lin CS, D'Agati V, Simon MC, Orkin SH, Costantini F . Development of hematopoietic cells lacking transcription factor GATA-1 Development 1995 121: 163–172

    CAS  PubMed  Google Scholar 

  48. Tsai FY, Keller G, Kuo FC et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2 Nature 1994 371: 221–226

    Article  CAS  PubMed  Google Scholar 

  49. Porcher C, Swat W, Rockwell K, Fujiwara Y, Alt FW, Orkin SH . The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages Cell 1996 86: 47–57

    Article  CAS  PubMed  Google Scholar 

  50. Scott EW, Fisher RC, Olson MC, Kehrli EW, Simon MC, Singh H . PU. 1 functions in a cell-autonomous manner to control the differentiation of multipotential lymphoid-myeloid progenitors Immunity 1997 6: 437–447

    Article  CAS  PubMed  Google Scholar 

  51. McKercher SR, Torbett BE, Anderson KL et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities EMBO J 1996 15: 5647–5658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shivdasani RA, Rosenblatt MF, Zucker-Franklin D et al. Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development Cell 1995 81: 695–704

    Article  CAS  PubMed  Google Scholar 

  53. Tsang AP, Fujiwara Y, Hom DB, Orkin SH . Failure of megakaryopoiesis and arrested erythropoiesis in mice lacking the GATA-1 transcriptional cofactor FOG Genes Dev 1998 12: 1176–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tsang AP, Visvader JE, Turner CA et al. FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation Cell 1997 90: 109–119

    Article  CAS  PubMed  Google Scholar 

  55. Yamaguchi Y, Zon LI, Ackerman SJ, Yamamoto M, Suda T . Forced GATA-1 expression in the murine myeloid cell line M1: induction of c-Mpl expression and megakaryocytic/erythroid differentiation Blood 1998 91: 450–457

    CAS  PubMed  Google Scholar 

  56. Visvader JE, Elefanty AG, Strasser A, Adams JM . GATA-1 but not SCL induces megakaryocytic differentiation in an early myeloid line EMBO J 1992 11: 4557–4564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kulessa H, Frampton J, Graf T . GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblasts Genes Dev 1995 9: 1250–1262

    Article  CAS  PubMed  Google Scholar 

  58. Visvader JE, Crossley M, Hill J, Orkin SH, Adams JM . The C-terminal zinc finger of GATA-1 or GATA-2 is sufficient to induce megakaryocytic differentiation of an early myeloid cell line Mol Cell Biol 1995 15: 634–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Visvader J, Adams JM . Megakaryocytic differentiation induced in 416B myeloid cells by GATA-2 and GATA-3 transgenes or 5-azacytidine is tightly coupled to GATA-1 expression Blood 1993 82: 1493–1501

    CAS  PubMed  Google Scholar 

  60. Valledor AF, Borras FE, Cullell-Young M, Celada A . Transcription factors that regulate monocyte/macrophage differentiation J Leuk Biol 1998 63: 405–417

    Article  CAS  Google Scholar 

  61. Fisher RC, Scott EW . Role of PU. 1 in hematopoiesis Stem Cells 1998 16: 25–37

    Article  CAS  PubMed  Google Scholar 

  62. Orkin SH . Hematopoiesis: how does it happen? Curr Opin Cell Biol 1995 7: 870–877

    Article  CAS  PubMed  Google Scholar 

  63. Sieweke MH, Graf T . A transcription factor party during blood cell differentiation Curr Opin Genet Dev 1998 8: 545–551

    Article  CAS  PubMed  Google Scholar 

  64. Cross MA, Enver T . The lineage commitment of haemopoietic progenitor cells Curr Opin Genet Dev 1997 7: 609–613

    Article  CAS  PubMed  Google Scholar 

  65. Long MW, Heffner CH, Williams JL, Peters C, Prochownik EV . Regulation of megakaryocyte phenotype in human erythroleukemia cells J Clin Invest 1990 85: 1072–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Delgado MD, Quincoces AF, Gomez-Casares MT et al. Differential expression of ras protooncogenes during in vitro differentiation of human erythroleukemia cells Cancer Res 1992 52: 5979–5984

    CAS  PubMed  Google Scholar 

  67. Drexler HG, Gaedicke G, Minowada J . Erythroleukemia cell lines HEL and K-562: changes in isoenzyme profiles and morphology during induction of differentiation Hematol Oncol 1986 4: 163–174

    Article  CAS  PubMed  Google Scholar 

  68. Dai W, Pan HQ, Ouyang B et al. Expression of receptor protein tyrosine kinase tif is regulated during leukemia cell differentiation Leukemia 1996 10: 978–983

    CAS  PubMed  Google Scholar 

  69. Huberman E, Callaham MF . Induction of terminal differentiation in human promyelocytic leukemia cells by tumor-promoting agents Proc Natl Acad Sci USA 1979 76: 1293–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Winzen R, Wallach D, Engelmann H et al. Selective decrease in cell surface expression and mRNA level of the 55-kDa tumor necrosis factor receptor during differentiation of HL-60 cells into macrophage-like but not granulocyte-like cells J Immunol 1992 148: 3454–3460

    CAS  PubMed  Google Scholar 

  71. Collins SJ, Bodner A, Ting R, Gallo RC . Induction of morphological and functional differentiation of human promyelocytic leukemia cells (HL-60) by componuds which induce differentiation of murine leukemia cells Intl J Cancer 1980 25: 213–218

    Article  CAS  Google Scholar 

  72. Drachman JG, Rojnuckarin P, Kaushansky K . Thrombopoietin signal transduction: studies from cell lines and primary cells Methods 1999 17: 238–249

    Article  CAS  PubMed  Google Scholar 

  73. Drachman JG, Sabath DF, Fox NE, Kaushansky K . Thrombopoietin signal transduction in purified murine megakaryocytes Blood 1997 89: 483–492

    CAS  PubMed  Google Scholar 

  74. Darzynkiewicz Z . Cell cycle analysis by flow cytometry. In: Celis JE (ed) Cell Biology vol. 1: Academic Press: San Diego 1994 pp 261–271

    Google Scholar 

  75. Stein GS, Stein JL, Lian JB, J. LT, Owen T, McCabe L . Synchronization of normal diploid and transformed mammalian cells. In: Celis JE (ed) Cell Biology vol. 1: Academic Press: San Diego 1994 pp 282–287

    Google Scholar 

  76. Khanna-Gupta A, Zibello T, Kolla S, Neufeld EJ, Berliner N . CCAAT displacement protein (CDP/cut) recognizes a silencer element within the lactoferrin gene promoter Blood 1997 90: 2784–2795

    CAS  PubMed  Google Scholar 

  77. Luo W, Skalnik DG . Ccaat displacement protein competes with multiple transcriptional activators for binding to four sites in the proximal Gp91 (Phox) promoter J Biol Chem 1996 271: 18203–18210

    Article  CAS  PubMed  Google Scholar 

  78. Reichardt HM, Kaestner KH, Tuckermann J et al. DNA binding of the glucocorticoid receptor is not essential for survival (see comments) Cell 1998 93: 531–541

    Article  CAS  PubMed  Google Scholar 

  79. Weiss MJ, Yu C, Orkin SH . Erythroid-cell-specific properties of transcription factor GATA-1 revealed by phenotypic rescue of a gene-targeted cell line Mol Cell Biol 1997 17: 1642–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by grant No. MT-11590 from the Medical Research Council of Canada and No. 3497 from the National Cancer Institute of Canada to AN, grant Nos NIH R01 CA31615 and NIH R01 DK49855 to KK, and grant No. K08 HL03498 to JGD. AN is the recipient of a scholarship from the Fonds de la Recherche en Santé du Québec. NM-S is the recipient of a fellowship from the Royal Victoria Hospital Research Institute, and JGD is the recipient of an ASH Fellow Scholar Award.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin-Soudant, N., Drachman, J., Kaushansky, K. et al. CDP/Cut DNA binding activity is down-modulated in granulocytes, macrophages and erythrocytes but remains elevated in differentiating megakaryocytes. Leukemia 14, 863–873 (2000). https://doi.org/10.1038/sj.leu.2401764

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401764

Keywords

Search

Quick links