Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Therapy

Individualized methotrexate dosing in children with relapsed acute lymphoblastic leukemia

Abstract

Although high-dose methotrexate has been extensively studied in children with newly diagnosed acute lymphoblastic leukemia (ALL), there are fewer data in children with relapsed ALL, many of whom have been heavily pretreated and have subclinical kidney dysfunction. We characterized the pharmacokinetics of adaptively controlled methotrexate given as a 24-h infusion during consolidation therapy in 24 children with relapsed ALL. To achieve the target steady-state concentration of 65 μM, dosage adjustments were required in 14 patients, with doses ranging from 2854 to 6700 mg/m2 per course. The mean steady-state plasma concentration (Cpss) of 68.0 μM was different (P = 0.025) than the predicted Cpss (mean = 87.4 μM; range 35.7–184 μM) had no adjustment in dose been made. The coefficient of variation in Cpss was reduced from 41% to 18% by individualizing doses. Predisposing factors that correlated with decreased methotrexate clearance were female sex (P = 0.03), age greater than 6 years (P = 0.01), and prior history of heavy amphotericin b treatment (>30 mg/kg) (P = 0.03), but no factor predicted low clearance as well as the measured initial methotrexate clearance during the infusion (P < 0.0001). there was no life-threatening toxicity with the regimen. we conclude that dosage individualization decreases interpatient variability and avoids potentially toxic methotrexate exposures in heavily pretreated all patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Pui C-H, Evans WE . Acute lymphoblastic leukemia New Engl J Med 1998 339: 605–615

    Article  CAS  Google Scholar 

  2. Pui C-H . Childhood leukemias New Engl J Med 1995 332: 1618–1630

    Article  CAS  Google Scholar 

  3. Rivera GK, Hudson MM, Liu Q, Benaim E, Ribeiro R, Crist WM, Pui C-H . Effectiveness of intensified rotational combination chemotherapy for late hematologic relapse of childhood acute lymphoblastic leukemia Blood 1996 88: 831–837

    CAS  PubMed  Google Scholar 

  4. Evans WE, Relling MV, Rodman JH, Crom WR, Boyett JM, Pui C-H . Conventional versus individualized chemotherapy for childhood acute lymphoblastic leukemia New Engl J Med 1998 21: 435–437

    Google Scholar 

  5. Milano G, Thyss A, Debeauvais FS, Laureys G, Benoit Y, Deville A, Dutour C, Robert A, Otten J . Behar C, Frappaz D. CSF drug levels for children with acute lymphoblastic leukemia treated by 5g/m2 methotrexate Eur J Cancer 1990 26: 492–495

    Article  CAS  Google Scholar 

  6. D'Argenio DZ, Schumitzky A . A program package for simulation and parameter estimation in pharmacokinetics Comp Prog Biomed 1979 9: 115–1134

    Article  CAS  Google Scholar 

  7. Schwartz GJ, Haycock GB, Edelmann CM, Spitzer A . A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine Pediatrics 1976 58: 259–263

    CAS  PubMed  Google Scholar 

  8. Rask C, Albertioni F, Bentzen M, Schroeder H, Peterson C . Clinical and pharmacokinetic risk factors for high-dose methotrexate-induced toxicity in children with acute lymphoblastic leukemia Acta Oncol 1998 37: 277–284

    Article  CAS  Google Scholar 

  9. Relling MV, Fairclough D, Ayers D, Crom WR, Rodman JH, Pui C-H, Evans WE . Patient characteristics associated with high-risk methotrexate concentrations and toxicity J Clin Oncol 1994 12: 1667–1672

    Article  CAS  Google Scholar 

  10. Reiter A, Schrappe M, Ludwig W-D, Hiddemann W, Sauter S, Henze G, Zimmermann M, Lampart F, Havers W, Niethammer D, Odenwald E, Ritter J, Mann G, Welte K, Gadner H, Riehm H . Chemotherapy in 998 unselected childhood acute lymphoblastic leukemia patients. Results and conclusions of the multicenter trial ALL-BFM 86 Blood 1994 84: 3122–3133

    CAS  PubMed  Google Scholar 

  11. Pui C-H, Boyett JM, Relling MV, Harrison PL, Rivera GK, Behn FG, Sandlund JT, Ribeiro RC, Rubnitz JE, Gajjar A, Evans WE . Sex differences in prognosis for children with acute lymphoblastic leukemia J Clin Oncol 1999 17: 818–824

    Article  CAS  Google Scholar 

  12. Balis FM, Holcenberg JS, Poplack DG, Ge J, Sather HN, Murphy RF, Ames MM, Waskerwitz MJ, Tubergen DG, Simm S, Gilchrist GS, Bleyer WA . Pharmacokinetics and pharmacodynamics or oral methotrexate and mercaptopurine in children with lower risk acute lymphoblastic leukemia: a joint children's cancer group and pediatric oncology branch study Blood 1998 92: 3569–3577

    CAS  PubMed  Google Scholar 

  13. Sather H, Miller D, Nesbit M, Heyn R, Hammond D . Differences in prognosis for boys and girls with acute lymphoblastic leukemia Lancet 1981 i: 741–743

    Google Scholar 

  14. Gustafsson G, Kreuger A . Sex and other prognostic factors in acute lymphoblastic leukemia in childhood Am J Pediat Hematol Oncol 1983 5: 243–250

    CAS  Google Scholar 

  15. Lanning M, Garwicz S, Hertz H, Jonmundsson G, Kreuger A, Lie SO, Moe PJ, Salmi TT, Schroder H, Siimes MA, Wesenberg F, Yssing M, Ahstrom L, Gustafsson G . Superior treatment results in females with high risk acute lymphoblastic leukemia in childhood Acta Paediat 1992 81: 66–68

    Article  CAS  Google Scholar 

  16. Shuster JJ, Wacker P, Pullen J, Humbert J, Land VJ, Mahoney DH Jr, Lauer S, Look AT, Borowitz MJ, Carroll AJ, Camitta B . Prognostic significance of sex in childhood precursor acute lymphoblastic leukemia: a pediatric oncology group study J Clin Oncol 1998 16: 2854–2863

    Article  CAS  Google Scholar 

  17. Krance RA, Newman EM, Ravindranath Y, Harris MB, Brecher M, Wimmer R, Shuster JJ, Land VJ, Pullen J, Crist W, Pinkel D . A pilot study of intermediate-dose methotrexate and cytosine arabinoside, ‘spread-out’ or ‘up-front’, in continuation therapy for childhood non-T, non-B acute lymphoblastic leukemia: a Pediatric Oncology Group study Cancer 1991 67: 550–556

    Article  CAS  Google Scholar 

  18. Patte C, Bernard A, Hartmann O, Kalifa C, Flamant F, Lemerle J . High-dose methotrexate and continuous infusion Ara-C in children's non-Hodgkin's lymphoma Pediat Hematol Oncol 1986 3: 11–18

    Article  CAS  Google Scholar 

  19. Land, VJ, Shuster WM, Crist Y, Ravindranath MB, Harns MB, Krance RA, Pinkel D, Pullen DJ . Comparison of two schedules of intermediate-dose methotrexate and cytarabine consolidation therapy for childhood B-precursor cell acute lymphoblastic leukemia: a pediatric oncology group study J Clin Oncol 1994 12: 1939–1945

    Article  CAS  Google Scholar 

  20. Graham ML, Shuster JJ, Kamen BA, Land VJ, Borowitz MJ, Camitta B, Cheo DL, Harrison MP, Leventhal BG, Pinkel DP, Pullen DJ, Steuber P, Whitehead VM . Changes in the red blood cell methotrexate pharmacology and their impact on outcome when cytarabine is infused with methotrexate in the therapy of acute lymphocytic leukemia in children: a pediatric oncology group study Clin Cancer Res 1996 2: 331–337

    CAS  PubMed  Google Scholar 

  21. Mahoney DH, Shuster J, Nitschke R, Lauer SJ, Winick N, Steuber CP, Camitta B . Intermediate-dose intravenous methotrexate with intravenous mercaptopurine is superior to repetitive low-dose oral methotrexate with intravenous mercaptopurine for children with lower-risk B-lineage acute lymphoblastic leukemia J Clin Oncol 1998 16: 246–254

    Article  CAS  Google Scholar 

  22. Camitta B, Mahoney D, Leventhat B, Lauer SJ, Shuster JJ, Adair S, Civin C, Munoz L, Steuber P, Strother D, Kamen BA . Intensive intravenous methotrexate and mercaptopurine treatment of higher-risk non-T, non-B acute lymphocytic leukemia: a pediatric oncology group study J Clin Oncol 1994 12: 1383–1389

    Article  CAS  Google Scholar 

  23. Camitta B, Leventhal B, Lauer S, Shuster JJ, Adair S, Casper J, Civin C, Graham M, Mahoney D, Munoz L . Intermediate-dose intravenous methotrexate and mercaptopurine therapy for non-T, non-B acute lymphocytic leukemia of childhood: a pediatric oncology group study J Clin Oncol 1989 7: 1539–1544

    Article  CAS  Google Scholar 

  24. Evans WE, Crom WR, Abromowitch M, Dodge R, Look AT, Bowman P, George S, Pui C-H . Clinical pharmacodynamics of high-dose methotrexate in childhood acute lymphocytic leukemia. Identification of a relation between concentration and effect New Engl J Med 1986 314: 471–477

    Article  CAS  Google Scholar 

  25. Matherly LH, Taub JW . Methotrexate pharmacology and resistance in childhood acute lymphoblastic leukemia Leuk Lymphoma 1996 21: 359–368

    Article  CAS  Google Scholar 

  26. Bertino JR, Goker E, Gorlick R, Li WW, Banerjee D . Resistance mechanisms to methotrexate in tumors Oncologist 1996 1: 223–226

    CAS  PubMed  Google Scholar 

  27. Gorlick R, Goker E, Trippett T, Watham M, Banerjee D, Bertino JR . Intrinsic and acquired resistance to methotrexate in acute leukemia New Engl J Med 1996 335: 1041–1048

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH CA51001, CA78224, Cancer Center CORE grant CA21765, by a Center of Excellence grant from the State of Tennessee, and American Lebanese Syrian Associated Charities (ALSAC).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wall, A., Gajjar, A., Link, A. et al. Individualized methotrexate dosing in children with relapsed acute lymphoblastic leukemia. Leukemia 14, 221–225 (2000). https://doi.org/10.1038/sj.leu.2401673

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401673

Keywords

This article is cited by

Search

Quick links