Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Angiotensinogen promoter variants influence gene expression in human kidney and visceral adipose tissue

Abstract

Human angiotensinogen (AGT) gene promoter polymorphisms (G−217A; A−20C; G−6A) influence AGT transcription in vitro and have been implicated in the genetics of essential hypertension. We analysed the association among AGT promoter variants and AGT mRNA levels in human kidney and visceral adipose tissue (VAT) in vivo. Samples of kidney and VAT were obtained from 35 consecutive patients undergoing renal surgery. The AGT gene promoter of each patient was sequenced to identify variants. AGT gene expression was studied by real-time PCR TaqMan assay. Clinical data obtained before surgery were also considered in the statistical analysis. Two new polymorphisms at −175 and at −163 were identified. Although AGT expression was significantly higher in VAT than in the kidney, when both variants were present together AGT expression in VAT was about fivefold lower (P=0.033) than in the wild haplotype. This lower AGT expression in VAT suggests that the proximity and linkage of −175A and −163A variants might destabilize the binding of specific transcription factors to an acute-phase responsive element 3. Among the known AGT promoter variants, only −20C SNP has an important effect on tissue-specific differential AGT expression in the human tissues studied, inducing a 3.8-fold increase in AGT mRNA localized only in the kidney medulla (P=0.038). The other known polymorphisms (G−6A; G−217A) were not associated with different levels of AGT expression. Our results support the hypothesis that some human AGT promoter variants influence transcriptional activity in a tissue-specific way in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Jeunemaitre X, Soubrier F, Kotelevtsev YV, Lifton RP, Williams CS, Charru A et al. Molecular basis of human hypertension: role of angiotensinogen. Cell 1992; 71: 169–180.

    Article  CAS  Google Scholar 

  2. Corvol P, Jeunemaitre X . Molecular genetics of human hypertension: role of AGT. Endocr Rev Endocr Rev 1997; 18: 662–677.

    CAS  PubMed  Google Scholar 

  3. Dickson ME, Sigmund CD . Genetic basis of hypertension: revisiting angiotensinogen. Hypertension 2006; 48: 14–20.

    Article  CAS  Google Scholar 

  4. Staessen JA, Kuznetsova T, Wang JG, Emelianov D, Vlietinck R, Fagard R . M235T angiotensinogen polymorphism and cardiovascular renal risk. J Hypertens 1999; 17: 9–17.

    Article  CAS  Google Scholar 

  5. Inoue I, Nakajima T, Williams CS, Quackenbush J, Puryear R, Powers M et al. A nucleotide substitution in the promoter of human angiotensinogen is associated with essential hypertension and affects basal transcription in vitro. J Clin Invest 1997; 99: 1786–1797.

    Article  CAS  Google Scholar 

  6. Sarzani R, Dessì-Fulgheri P, Mazzara D, Catalini R, Cola G, Bersigotti G et al. Cardiovascular phenotype of young adults and angiotensinogen alleles. J Hypertens 2001; 19: 2171–2178.

    Article  CAS  Google Scholar 

  7. Pereira TV, Nunes AC, Rudnicki M, Yamada Y, Pereira AC, Krieger JE . Meta-analysis of the association of 4 angiotensinogen polymorphisms with essential hypertension: a role beyond M235T? Hypertension 2008; 51: 778–783.

    Article  Google Scholar 

  8. Jain S, Li Y, Patil S, Kumar A . A single-nucleotide polymorphism in human angiotensinogen gene is associated with essential hypertension and affects glucocorticoid induced promoter activity. J Mol Med 2005; 83: 121–131.

    Article  CAS  Google Scholar 

  9. Zhao YY, Zhou J, Narayanan CS, Cui Y, Kumar A . Role of C/A polymorphism at –20 on the expression of human angiotensinogen gene. Hypertension 1999; 33: 108–115.

    Article  CAS  Google Scholar 

  10. Dickson ME, Zimmerman MB, Rahmouni K, Sigmund CD . 20 and −217 promoter variants dominate differential angiotensinogen haplotype regulation in angiotensinogen-expressing cells. Hypertension 2007; 49: 631–639.

    Article  CAS  Google Scholar 

  11. Cooper R, McFarlane-Anderson N, Bennett FI, Wilks R, Puras A, Tewksbury D et al. ACE, angiotensinogen and obesity: a potential pathway leading to hypertension. J Hum Hypertens 1997; 11: 107–111.

    Article  CAS  Google Scholar 

  12. van Harmelen V, Elizalde M, Ariapart P, Bergstedt-Lindqvist S, Reynisdottir S, Hoffstedt J et al. The association of human adipose angiotensinogen gene expression with abdominal fat distribution in obesity. Int J Obes Relat Metab Disord 2000; 24: 673–678.

    Article  CAS  Google Scholar 

  13. Rahmouni K, Mark AL, Haynes WG, Sigmund CD . Adipose depot-specific modulation of angiotensinogen gene expression in diet-induced obesity. Am J Physiol Endocrinol Metab 2004; 286: E891–E895.

    Article  CAS  Google Scholar 

  14. Ingelfinger JR, Schunkert H, Ellison KE, Pivor M, Zuo WM, Pratt R et al. Intrarenal angiotensinogen: localization and regulation. Pediatr Nephrol 1990; 4: 424–428.

    Article  CAS  Google Scholar 

  15. Peti-Peterdi J, Warnock DG, Bell PD . Angiotensin II directly stimulates ENaC activity in the cortical collecting duct via AT1 receptors. J Am Soc Nephrol 2002; 13: 1131–1135.

    Article  CAS  Google Scholar 

  16. Sarzani R, Cusi D, Salvi F, Barlassina C, Macciardi F, Pietrucci F et al. The 460Trp allele of alpha-adducin increases carotid intima-media thickness in young adult males. J Hypertens 2006; 24: 697–703.

    Article  CAS  Google Scholar 

  17. Sarzani R, Fallo F, Dessi-Fulgheri P, Pistorello M, Lanari A, Paci VM et al. Local renin-angiotensin system in human adrenals and aldosteronomas. Hypertension 1992; 19: 702–707.

    Article  CAS  Google Scholar 

  18. Kobori H, Nangaku M, Navar LG, Nishiyama A . The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 2007; 59: 251–287.

    Article  CAS  Google Scholar 

  19. Paul M, Mehr AP, Kreutz R . Physiology of local renin-angiotensin systems. Physiol Rev 2006; 86: 747–803.

    Article  CAS  Google Scholar 

  20. Navar LG, Nishiyama A . Why are angiotensin concentrations so high in the kidney? Curr Opin Nephrol Hypertens 2004; 13: 107–115.

    Article  CAS  Google Scholar 

  21. Nakajima T, Wooding S, Sakagami T, Emi M, Tokunaga K, Tamiya G et al. Natural selection and population history in the human angiotensinogen gene (AGT): 736 complete AGT sequences in chromosomes from around the world. Am J Hum Genet 2004; 74: 898–916.

    Article  CAS  Google Scholar 

  22. Jeunemaitre X, Inoue I, Williams C, Charru A, Tichet JT, Powers M et al. Haplotypes of angiotensinogen in essential hypertension. Am J Hum Genet 1997; 60: 1448–1460.

    Article  CAS  Google Scholar 

  23. Sherman CT, Brasier AR . Role of signal transducers and activators of transcription 1 and -3 in inducible regulation of the human angiotensinogen gene by interleukin-6. Mol Endocrinol 2001; 15: 441–457.

    Article  Google Scholar 

  24. Jain S, Shah M, Li Y, Vinukonda G, Sehgal PB, Kumar A . Upregulation of human angiotensinogen (AGT) gene transcription by interferon–gamma: involvement of the STAT1-binding motif in the AGT promoter. Biochim Biophys Acta 2006; 1759: 340–347.

    Article  CAS  Google Scholar 

  25. Engeli S, Sharma AM . The renin–angiotensin system and natriuretic peptides in obesity-associated hypertension. J Mol Med 2001; 79: 21–29.

    Article  CAS  Google Scholar 

  26. Sarzani R, Salvi F, Dessì-Fulgheri P, Rappelli A . Renin–angiotensin system, natriuretic peptides, obesity, metabolic syndrome, and hypertension: an integrated view in humans. J Hypertens 2008; 26: 831–843.

    Article  CAS  Google Scholar 

  27. Saint-Marc P, Kozak LP, Ailhaud G, Darimont C, Negrel R . AngiotensinII asatrophic factor of white adipose tissue: stimulation of adipose cell formation. Endocrinology 2001; 142: 487–492.

    Article  CAS  Google Scholar 

  28. Jones BH, Standridge MK, Moustaid N . Angiotensin II increases lipogenesis in 3T3-L1 and human adipose cells. Endocrinology 1997; 138: 1512–1519.

    Article  CAS  Google Scholar 

  29. Darimont C, Vassaux G, Ailhaud G, Negrel R . Differentiation of pre-adipose cells: paracrine role of prostacyclin upon stimulation of adipose cells by angiotensin-II. Endocrinology 1994; 135: 2030–2036.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Sarzani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarzani, R., Bordicchia, M., Marcucci, P. et al. Angiotensinogen promoter variants influence gene expression in human kidney and visceral adipose tissue. J Hum Hypertens 24, 213–219 (2010). https://doi.org/10.1038/jhh.2009.48

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2009.48

Keywords

This article is cited by

Search

Quick links