Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genomic regions that influence plasma levels of inflammatory markers in hypertensive sibships

Abstract

We carried out univariate and bivariate linkage analyses to identify genomic regions that may influence plasma levels of C-reactive protein (CRP) and fibrinogen and exert pleiotropic effects on both traits. Subjects included African American (AA, n=1310, mean age 62.7±9.4 years) and non-Hispanic white (NHW, n=796, mean age 58.4±9.8 years) belonging to hypertensive sibships. Plasma CRP was measured by an immunoturbidimetric assay and fibrinogen by the Clauss method. Genotyping was performed at 366 microsatellite marker loci spaced 10 cM apart across the 22 autosomes. Estimation of heritability and linkage analyses was carried out using a variance components approach. Significant heritability was noted for CRP (0.38 in AA and 0.37 in NHW subjects) and fibrinogen (0.44 in AA and 0.28 in NHW subjects). Significant genetic correlation between CRP and fibrinogen was present in both AA (0.39) and NHW (0.40) subjects. In univariate linkage analysis, the maximum logarithm of odds (LOD) score for CRP was on chromosome 10q22 in NHW (LOD=1.69, 106.75 cM, P=0.0026) and for fibrinogen on chromosome 2 in AA (LOD=2.14, 55.5 cM, P=0.0009) subjects. Bivariate linkage analysis demonstrated suggestive evidence of linkage (defined as LOD score2.87) for both traits on chromosome 12 (LOD=3.44, 152.16 cM, P=0.0003) in AA and on chromosome 21 (LOD=3.03, 13.05 cM, P=0.0008) in NHW subjects. Plasma CRP and fibrinogen levels are heritable and genetically correlated. Linkage analyses identified several chromosomal regions that may harbour genes influencing CRP and fibrinogen levels and exert pleiotropic effects on both traits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Wilhelmsen L, Svardsudd K, Korsan-Bengtsen K, Larsson B, Welin L, Tibblin G . Fibrinogen as a risk factor for stroke and myocardial infarction. N Eng J Med 1984; 311: 501–505.

    Article  CAS  Google Scholar 

  2. Ridker PM, Hennekens CH, Buring JE, Rifai N . C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Eng J Med 2000; 342: 836–843.

    Article  CAS  Google Scholar 

  3. Black S, Kushner I, Samols D . C-reactive protein. J Biol Chem 2004; 279: 48487–48490.

    Article  CAS  Google Scholar 

  4. Wang Q, Zhu X, Xu Q, Ding X, Chen YE, Song Q . Effect of C-reactive protein on gene expression in vascular endothelial cells. Am J Physiol Heart Circ Physiol 2005; 288: H1539–H1545.

    Article  CAS  Google Scholar 

  5. Feng D, Lindpaintner K, Larson MG, O'Donnell CJ, Lipinska I, Sutherland PA et al. Platelet glycoprotein IIIa Pl(a) polymorphism, fibrinogen, and platelet aggregability: the Framingham Heart Study. Circulation 2001; 104: 140–144.

    Article  CAS  Google Scholar 

  6. Ishida T, Tanaka K . Effects of fibrin and fibrinogen-degradation products on the growth of rabbit aortic smooth muscle cells in culture. Atherosclerosis 1982; 44: 161–174.

    Article  CAS  Google Scholar 

  7. Paul A, Ko KWS, Li L, Yechoor V, McCrory MA, Szalai AJ et al. C-reactive protein accelerates the progression of atherosclerosis in apolipoprotein e-deficient mice. Circulation 2004; 109: 647–655.

    Article  CAS  Google Scholar 

  8. Robinson DM, Schwahn C, Alte D, John U, Felix SB, Volzke H . Plasma fibrinogen levels are associated with a strong family history of myocardial infarction. Blood Coagul Fibrinolysis 2004; 15: 497–502.

    Article  CAS  Google Scholar 

  9. Smith EB . Fibrin deposition and fibrin degradation products in atherosclerotic plaques. Thromb Res 1994; 75: 329–335.

    Article  CAS  Google Scholar 

  10. Ford ES . The metabolic syndrome and C-reactive protein, fibrinogen, and leukocyte count: findings from the Third National Health and Nutrition Examination Survey. Atherosclerosis 2003; 168: 351–358.

    Article  CAS  Google Scholar 

  11. Pankow JS, Folsom AR, Cushman M, Borecki IB, Hopkins PN, Eckfeldt JH et al. Familial and genetic determinants of systemic markers of inflammation: the NHLBI family heart study. Atherosclerosis 2001; 154: 681–689.

    Article  CAS  Google Scholar 

  12. Hamsten A, Iselius L, de Faire U, Blomback M . Genetic and cultural inheritance of plasma fibrinogen concentration. Lancet 1987; 330: 988–991.

    Article  Google Scholar 

  13. de Lange M, Snieder H, Ariens RA, Spector TD, Grant PJ . The genetics of haemostasis: a twin study. Lancet 2001; 357: 101–105.

    Article  CAS  Google Scholar 

  14. Tybjaerg-Hansen A, Agerholm-Larsen B, Humphries SE, Abildgaard S, Schnohr P, Nordestgaard BG . A common mutation (G-455 → A) in the beta-fibrinogen promoter is an independent predictor of plasma fibrinogen, but not of ischemic heart disease. A study of 9127 individuals based on the Copenhagen City Heart Study. J Clin Invest 1997; 99: 3034–3039.

    Article  CAS  Google Scholar 

  15. Crawford DC, Sanders CL, Qin X, Smith JD, Shephard C, Wong M et al. Genetic variation is associated with C-reactive protein levels in the third National Health and Nutrition Examination Survey. Circulation 2006; 114: 2458–2465.

    Article  CAS  Google Scholar 

  16. Carlson CS, Aldred SF, Lee PK, Tracy RP, Schwartz SM, Rieder M et al. Polymorphisms within the C-reactive protein (CRP) promoter region are associated with plasma CRP levels. Am J Hum Genet 2005; 77: 64–77.

    Article  CAS  Google Scholar 

  17. Kullo IJ, Turner ST, Kardia SL, Mosley Jr TH, Boerwinkle E, de Andrade M . A genome-wide linkage scan for ankle-brachial index in African American and non-Hispanic white subjects participating in the GENOA study. Atherosclerosis 2006; 187: 433–438.

    Article  CAS  Google Scholar 

  18. Keevil BG, Nicholls SP, Kilpatrick ES . Evaluation of a latex-enhanced immunoturbidimetric assay for measuring low concentrations of C-reactive protein. Ann Clin Biochem 1998; 35 (Part 5): 671–673.

    Article  CAS  Google Scholar 

  19. von Clauss A . Gerinnungsphysiologische Schnellmethode zur Bestimmung des Fibrinogens. Acta Haematol 1957; 17: 237–246.

    Article  Google Scholar 

  20. Kullo IJ, Seward JB, Bailey KR, Bielak LF, Grossardt BR, Sheedy II PF et al. C-reactive protein is related to arterial wave reflection and stiffness in asymptomatic subjects from the community. Am J Hypertens 2005; 18: 1123–1129.

    Article  CAS  Google Scholar 

  21. Vogel F, Motulsky A . Human Genetics: Problems and Approaches, 3rd edn. Springer-Verlag: Berlin, 1997.

    Book  Google Scholar 

  22. de Andrade M, Atkinson E, Lunde E, Amos C, Chen J . Estimating genetic components of variance in family studies using the Multic routines. In: Technical Report Series No. 78. Department of Health Science Research, Mayo Clinic: Rochester, Minnesota, 2006, http://ndc.mayo.edu/mayo/research/biostat/upload/78.pdf.

    Google Scholar 

  23. Amos CI . Robust variance-components approach for assessing genetic linkage in pedigrees. Am J Hum Genet 1994; 54: 535–543.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. de Andrade M, Thiel TJ, Yu L, Amos CI . Assessing linkage on chromosome 5 using components of variance approach: univariate versus multivariate. Genet Epidemiol 1997; 14: 773–778.

    Article  CAS  Google Scholar 

  25. Turner ST, Kardia SL, Boerwinkle E, de Andrade M . Multivariate linkage analysis of blood pressure and body mass index. Genet Epidemiol 2004; 27: 64–73.

    Article  Google Scholar 

  26. Sobel E, Sengul H, Weeks DE . Multipoint estimation of identity-by-descent probabilities at arbitrary positions among marker loci on general pedigrees. Hum Hered 2001; 52: 121–131.

    Article  CAS  Google Scholar 

  27. Self S, Liang K-Y . Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under non-standard conditions. J Am Stat Assoc 1987; 82: 605–610.

    Article  Google Scholar 

  28. Kamphuisen PW, Eikenboom JC, Vos HL, Pablo R, Sturk A, Bertina RM et al. Increased levels of factor VIII and fibrinogen in patients with venous thrombosis are not caused by acute phase reactions. Thromb Haemost 1999; 81: 680–683.

    Article  CAS  Google Scholar 

  29. Wakayama H, Hasegawa Y, Kawabe T, Hara T, Matsuo S, Mizuno M et al. Abolition of anti-glomerular basement membrane antibody-mediated glomerulonephritis in FcRgamma-deficient mice. Eur J Immunol 2000; 30: 1182–1190.

    Article  CAS  Google Scholar 

  30. Falati S, Liu Q, Gross P, Merrill-Skoloff G, Chou J, Vandendries E et al. Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin. J Exp Med 2003; 197: 1585–1598.

    Article  CAS  Google Scholar 

  31. Minnema MC, Chang AC, Jansen PM, Lubbers YT, Pratt BM, Whittaker BG et al. Recombinant human antithrombin III improves survival and attenuates inflammatory responses in baboons lethally challenged with Escherichia coli. Blood 2000; 95: 1117–1123.

    CAS  PubMed  Google Scholar 

  32. Ishiguro K, Kojima T, Kadomatsu K, Nakayama Y, Takagi A, Suzuki M et al. Complete antithrombin deficiency in mice results in embryonic lethality. J Clin Invest 2000; 106: 873–878.

    Article  CAS  Google Scholar 

  33. Tadokoro S, Tomiyama Y, Honda S, Kashiwagi H, Kosugi S, Shiraga M et al. Missense mutations in the beta(3) subunit have a different impact on the expression and function between alpha(IIb)beta(3) and alpha(v)beta(3). Blood 2002; 99: 931–938.

    Article  CAS  Google Scholar 

  34. Chen P, Sun CX, Liu JN . A novel anti-platelet monoclonal antibody (3C7) specific for the complex of integrin alpha IIb beta3 inhibits platelet aggregation and adhesion. J Biol Chem 2005; 280: 25403–25408.

    Article  CAS  Google Scholar 

  35. Ly DP, Zazzali KM, Corbett SA . De novo expression of the integrin alpha5beta1 regulates alphavbeta3-mediated adhesion and migration on fibrinogen. J Biol Chem 2003; 278: 21878–21885.

    Article  CAS  Google Scholar 

  36. Oki T, Kitaura J, Eto K, Lu Y, Maeda-Yamamoto M, Inagaki N et al. Integrin alphaIIbbeta3 induces the adhesion and activation of mast cells through interaction with fibrinogen. J Immunol 2006; 176: 52–60.

    Article  CAS  Google Scholar 

  37. Flores-Morales A, Stahlberg N, Tollet-Egnell P, Lundeberg J, Malek RL, Quackenbush J et al. Microarray analysis of the in vivo effects of hypophysectomy and growth hormone treatment on gene expression in the rat. Endocrinology 2001; 142: 3163–3176.

    Article  CAS  Google Scholar 

  38. Braun A, Trigatti BL, Post MJ, Sato K, Simons M, Edelberg JM et al. Loss of SR-BI expression leads to the early onset of occlusive atherosclerotic coronary artery disease, spontaneous myocardial infarctions, severe cardiac dysfunction, and premature death in apolipoprotein E-deficient mice. Circ Res 2002; 90: 270–276.

    Article  CAS  Google Scholar 

  39. Leu JI, Crissey MA, Leu JP, Ciliberto G, Taub R . Interleukin-6-induced STAT3 and AP-1 amplify hepatocyte nuclear factor 1-mediated transactivation of hepatic genes, an adaptive response to liver injury. Mol Cell Biol 2001; 21: 414–424.

    Article  CAS  Google Scholar 

  40. Pontoglio M, Barra J, Hadchouel M, Doyen A, Kress C, Bach JP et al. Hepatocyte nuclear factor 1 inactivation results in hepatic dysfunction, phenylketonuria, and renal Fanconi syndrome. Cell 1996; 84: 575–585.

    Article  CAS  Google Scholar 

  41. Suresh MV, Singh SK, Agrawal A . Interaction of calcium-bound C-reactive protein with fibronectin is controlled by pH: in vivo implications. J Biol Chem 2004; 279: 52552–52557.

    Article  CAS  Google Scholar 

  42. Kleemann R, Gervois PP, Verschuren L, Staels B, Princen HM, Kooistra T . Fibrates down-regulate IL-1-stimulated C-reactive protein gene expression in hepatocytes by reducing nuclear p50-NFkappa B-C/EBP-beta complex formation. Blood 2003; 101: 545–551.

    Article  CAS  Google Scholar 

  43. Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ et al. A network-based analysis of systemic inflammation in humans. Nature 2005; 437: 1032–1037.

    Article  CAS  Google Scholar 

  44. Kullo IJ, Ding K, Boerwinkle E, Turner ST, de Andrade M . Quantitative trait loci influencing low density lipoprotein particle size in African Americans. J Lipid Res 2006; 47: 1457–1462.

    Article  CAS  Google Scholar 

  45. Kullo IJ, Ding K, Boerwinkle E, Turner ST, Mosley Jr TH, Kardia SL et al. Novel genomic loci influencing plasma homocysteine levels. Stroke 2006; 37: 1703–1709.

    Article  CAS  Google Scholar 

  46. Best LG, North KE, Tracy RP, Lee ET, Howard BV, Palmieri V et al. Genetic determination of acute phase reactant levels: the strong heart study. Hum Hered 2004; 58: 112–116.

    Article  CAS  Google Scholar 

  47. Keenan H, Poznik G, Varo N, Schneider J, Almasy L, Warram J et al. Identification of a locus modulating serum C-reactive protein levels on chromosome 5p15. Atherosclerosis 2007; e-pub ahead of print: 6 March 2007.

  48. Suk HJ, Ridker PM, Cook NR, Zee RY . Relation of polymorphism within the C-reactive protein gene and plasma CRP levels. Atherosclerosis 2005; 178: 139–145.

    Article  CAS  Google Scholar 

  49. Miller DT, Zee RY, Suk Danik J, Kozlowski P, Chasman DI, Lazarus R et al. Association of common CRP gene variants with CRP levels and cardiovascular events. Ann Hum Genet 2005; 69: 623–638.

    Article  CAS  Google Scholar 

  50. Zee RY, Ridker PM . Polymorphism in the human C-reactive protein (CRP) gene, plasma concentrations of CRP, and the risk of future arterial thrombosis. Atherosclerosis 2002; 162: 217–219.

    Article  CAS  Google Scholar 

  51. Brull DJ, Serrano N, Zito F, Jones L, Montgomery HE, Rumley A et al. Human CRP gene polymorphism influences CRP levels: implications for the prediction and pathogenesis of coronary heart disease. Arterioscler Thromb Vasc Biol 2003; 23: 2063–2069.

    Article  CAS  Google Scholar 

  52. Yang Q, Tofler GH, Cupples LA, Larson MG, Feng D, Lindpaintner K et al. A genome-wide search for genes affecting circulating fibrinogen levels in the Framingham Heart Study. Thromb Res 2003; 110: 57–64.

    Article  CAS  Google Scholar 

  53. Dupuis J, Larson MG, Vasan RS, Massaro JM, Wilson PW, Lipinska I et al. Genome scan of systemic biomarkers of vascular inflammation in the Framingham Heart Study: evidence for susceptibility loci on 1q. Atherosclerosis 2005; 182: 307–314.

    Article  CAS  Google Scholar 

  54. Timpson NJ, Lawlor DA, Harbord RM, Gaunt TR, Day IN, Palmer LJ et al. C-reactive protein and its role in metabolic syndrome: mendelian randomisation study. Lancet 2005; 366: 1954–1959.

    Article  CAS  Google Scholar 

  55. Kathiresan S, Larson MG, Vasan RS, Guo CY, Gona P, Keaney Jr JF et al. Contribution of clinical correlates and 13 C-reactive protein gene polymorphisms to interindividual variability in serum C-reactive protein level. Circulation 2006; 113: 1415–1423.

    Article  CAS  Google Scholar 

  56. Wang Q, Hunt SC, Xu Q, Chen YE, Province MA, Eckfeldt JH et al. Association study of CRP gene polymorphisms with serum CRP level and cardiovascular risk in the NHLBI family heart study. Am J Physiol Heart Circ Physiol 2006; 291: H2752–H2757.

    Article  CAS  Google Scholar 

  57. Yeh ET . CRP as a mediator of disease. Circulation 2004; 109: II11–II14.

    PubMed  Google Scholar 

  58. Soria JM, Almasy L, Souto JC, Buil A, Lathrop M, Blangero J et al. A genome search for genetic determinants that influence plasma fibrinogen levels. Arterioscler Thromb Vasc Biol 2005; 25: 1287–1292.

    Article  CAS  Google Scholar 

  59. Risch N, Merikangas K . The future of genetic studies of complex human diseases. Science 1996; 273: 1516–1517.

    Article  CAS  Google Scholar 

  60. Kullo IJ, de Andrade M, Boerwinkle E, McConnell JP, Kardia SL, Turner ST . Pleiotropic genetic effects contribute to the correlation between HDL cholesterol, triglycerides, and LDL particle size in hypertensive sibships. Am J Hypertens 2005; 18: 99–103.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants HL75794, HL 71917, U01 HL 54457, UO1 HL 54464 and the General Clinical Research Center Grant M01 RR00585 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I J Kullo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, K., Feng, D., de Andrade, M. et al. Genomic regions that influence plasma levels of inflammatory markers in hypertensive sibships. J Hum Hypertens 22, 102–110 (2008). https://doi.org/10.1038/sj.jhh.1002297

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jhh.1002297

Keywords

This article is cited by

Search

Quick links