Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute effects of renin-angiotensin system blockade on arterial function in hypertensive patients

Abstract

The acute effects of the renin-angiotensin system (RAS) blockers may be important in some clinical settings. To assess the acute impact of such drugs on arterial function, we studied the effects of captopril 25 mg, quinapril 20 mg and telmisartan 80 mg on 100 hypertensive patients, according to a randomized, double-blind, placebo-controlled study. Central (aortic) blood pressure (BP) and augmentation index (AIx, a measure of wave reflections), as well as flow-mediated dilatation (FMD) of the brachial artery and forearm blood flow (FBF) (measures of conduit and resistance artery endothelial function, respectively), were evaluated before and 2 h after oral drug administration. Compared to placebo, captopril and quinapril decreased central systolic (by 7.5 mm Hg, P<0.05 and by 12.3 mm Hg, P<0.001) and diastolic BP (by 4.9 mm Hg, P<0.01 and by 8.4 mm Hg, P<0.001), whereas telmisartan had no significant effect (P=NS). Additionally, AIx was reduced after quinapril (absolute decrease of 7.2%, P<0.01) and marginally after captopril (decrease of 4.7%, P=0.07). Only quinapril led to a beneficial change of FMD (absolute increase of 2.7%, P<0.001). No treatment was related to significant changes of peak hyperaemic or 3-min hyperaemic FBF. In adjusted analyses, all the favourable alterations induced by quinapril were independent of potential confounding haemodynamic factors. Our data show that acute RAS inhibition with quinapril (20 mg) may be more beneficial in terms of arterial function and central haemodynamics compared to captopril (25 mg) or telmisartan (80 mg). Further studies are needed to investigate whether these acute arterial effects of quinapril are clinically significant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. O'Rourke MF, Adji A . An updated clinical primer on large artery mechanics: implications of pulse waveform analysis and arterial tonometry. Curr Opin Cardiol 2005; 20: 275–281.

    Article  Google Scholar 

  2. Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 2001; 37: 1236–1241.

    Article  CAS  Google Scholar 

  3. Vlachopoulos C, Aznaouridis K, Stefanadis C . Clinical appraisal of arterial stiffness: the Argonauts in front of the Golden Fleece. Heart 2006; 92: 1544–1550.

    Article  CAS  Google Scholar 

  4. Widlansky ME, Gokce N, Keaney JF, Vita JA . The clinical implications of endothelial dysfunction. J Am Coll Cardiol 2003; 42: 1149–1160.

    Article  CAS  Google Scholar 

  5. Williams B, Lacy PS, Thom SM, Cruickshank K, Stanton A, Collier D et al. CAFE Investigators; Anglo-Scandinavian Cardiac Outcomes Trial Investigators; CAFE Steering Committee and Writing Committee. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation 2006; 113: 1213–1225.

    Article  CAS  Google Scholar 

  6. Park JB, Charbonneau F, Schiffrin EL . Correlation of endothelial function in large and small arteries in human essential hypertension. J Hypertens 2001; 19: 415–420.

    Article  CAS  Google Scholar 

  7. Modena MG, Bonetti L, Coppi F, Bursi F, Rossi R . Prognostic role of reversible endothelial dysfunction in hypertensive postmenopausal women. J Am Coll Cardiol 2002; 40: 505–510.

    Article  Google Scholar 

  8. Tropeano AI, Boutouyrie P, Pannier B, Joannides R, Balkestein E, Katsahian S et al. Brachial pressure-independent reduction in carotid stiffness after long-term angiotensin-converting enzyme inhibition in diabetic hypertensives. Hypertension 2006; 48: 80–86.

    Article  CAS  Google Scholar 

  9. Asmar RG, London GM, O'Rourke MF, Safar ME, For the REASON Project coordinators and investigators. Improvement in blood pressure, arterial stiffness and wave reflections with a very-low-dose perindopril/indapamide combination in hypertensive patient. A comparison with atenolol. Hypertension 2001; 38: 922–926.

    Article  CAS  Google Scholar 

  10. Hirata K, Vlachopoulos C, Adji A, O'Rourke MF . Benefits from angiotensin-converting enzyme inhibitor ‘beyond blood pressure lowering’: beyond blood pressure or beyond the brachial artery? J Hypertens 2005; 23: 551–556.

    Article  CAS  Google Scholar 

  11. Aznaouridis K, Vyssoulis G, Karpanou E, Marinakis A, Barbetseas J, Zervoudaki A et al. Left ventricular (LV) geometry and dipping state are determinants of LV mass reduction with ACE-inhibitor antihypertensive treatment. Blood Press Monit 2007; 12: 87–94.

    Article  Google Scholar 

  12. Uehata A, Takase B, Nishioka T, Kitamura K, Akima T, Kurita A et al. Effect of quinapril versus nitrendipine on endothelial dysfunction in patients with systemic hypertension. Am J Cardiol 2001; 87: 1414–1416.

    Article  CAS  Google Scholar 

  13. Tsang TS, Barnes ME, Abhayaratna WP, Cha SS, Gersh BJ, Langins AP et al. Effects of quinapril on left atrial structural remodeling and arterial stiffness. Am J Cardiol 2006; 97: 916–920.

    Article  CAS  Google Scholar 

  14. Higashi Y, Sasaki S, Nakagawa K, Ueda T, Yoshimizu A, Kurisu S et al. A Comparison of angiotensin-converting enzyme inhibitors, calcium antagonists, beta-blockers and diuretic agents on reactive hyperemia in patients with essential hypertension: a multicenter study. J Am Coll Cardiol 2000; 35: 284–291.

    Article  CAS  Google Scholar 

  15. Dzau VJ, Bernstein K, Celermajer D, Cohen J, Dahlof B, Deanfield J et al. Pathophysiologic and therapeutic importance of tissue ACE: a consensus report. Cardiovasc Drugs Ther 2002; 16: 149–160.

    Article  CAS  Google Scholar 

  16. Lyons D, Webster J, Benjamin N . Effect of enalapril and quinapril on forearm vascular ACE in man. Eur J Clin Pharmacol 1997; 51: 373–378.

    Article  CAS  Google Scholar 

  17. Schiffrin EL . Vascular and cardiac benefits of angiotensin receptor blockers. Am J Med 2002; 113: 409–418.

    Article  CAS  Google Scholar 

  18. Wienbergen H, Schiele R, Gitt AK, Juenger C, Heer T, Meisenzahl C, et al., for the MITRA PLUS Study Group. Impact of ramipril versus other angiotensin-converting enzyme inhibitors on outcome of unselected patients with ST-elevation acute myocardial infarction. Am J Cardiol 2002; 90: 1045–1049.

    Article  CAS  Google Scholar 

  19. Lazar HL, Bao Y, Rivers S, Bernard SA . Pretreatment with angiotensin-converting enzyme inhibitors attenuates ischemia-reperfusion injury. Ann Thorac Surg 2002; 73: 1522–1527.

    Article  Google Scholar 

  20. Hikosaka M, Yuasa F, Yuyama R, Motohiro M, Mimura J, Kawamura A et al. Effect of angiotensin-converting enzyme inhibitor on cardiopulmonary baroreflex sensitivity in patients with acute myocardial infarction. Am J Cardiol 2000; 86: 1241–1244.

    Article  CAS  Google Scholar 

  21. Lazar HL, Bao Y, Rivers S, Colton T, Bernard SA . High tissue affinity angiotensin-converting enzyme inhibitors improve endothelial function and reduce infarct size. Ann Thorac Surg 2001; 72: 548–554.

    Article  CAS  Google Scholar 

  22. Kurzencwyg D, Filion KB, Pilote L, Nault P, Platt RW, Rahme E et al. Cardiac medical therapy among patients undergoing abdominal aortic aneurysm repair. Ann Vasc Surg 2006; 20: 569–576.

    Article  Google Scholar 

  23. Tsikouris JP, Suarez JA, Simoni JS, Ziska M, Meyerrose GE . Exploring the effects of ACE inhibitor tissue penetration on vascular inflammation following acute myocardial infarction. Coron Artery Dis 2004; 15: 211–217.

    PubMed  Google Scholar 

  24. Tsikouris JP, Suarez JA, Meyerrose GE, Ziska M, Fike D, Smith J . Questioning a class effect: does ACE inhibitor tissue penetration influence the degree of fibrinolytic balance alteration following an acute myocardial infarction? J Clin Pharmacol 2004; 44: 150–157.

    Article  CAS  Google Scholar 

  25. Houben AJ, Kroon AA, de Haan CH, Fuss-Lejeune MJ, de Leeuw PW . Quinaprilat-induced vasodilatation in forearm vasculature of patients with essential hypertension: comparison with enalaprilat. Cardiovasc Drugs Ther 2000; 14: 657–663.

    Article  CAS  Google Scholar 

  26. Hornig B, Arakawa N, Haussmann D, Drexler H . Differential effects of quinaprilat and enalaprilat on endothelial function of conduit arteries in patients with chronic heart failure. Circulation 1998; 98: 2842–2848.

    Article  CAS  Google Scholar 

  27. Kimura M, Umemura K, Kosuge K, Nishimoto M, Ohashi K, Nakashima M . Attenuation by ACE inhibitor drugs of alpha-adrenoceptor sensitivity in human vessels: possible differences related to drug lipophilicity. Br J Clin Pharmacol 1998; 46: 599–603.

    Article  CAS  Google Scholar 

  28. Sharma AM . Telmisartan The ACE of ARBs? Hypertension 2006; 47: 1–2.

    Article  Google Scholar 

  29. Vlachopoulos C, Dima I, Aznaouridis K, Vasiliadou C, Ioakeimidis N, Aggeli C et al. Acute systemic inflammation increases arterial stiffness and decreases wave reflections in healthy individuals. Circulation 2005; 112: 2193–2200.

    Article  Google Scholar 

  30. Karatzis E, Papaioannou TG, Aznaouridis K, Karatzi K, Stamatelopoulos K, Zampelas A et al. Acute effects of caffeine on blood pressure and wave reflections in healthy subjects: should we consider monitoring central blood pressure? Int J Cardiol 2005; 98: 425–430.

    Article  Google Scholar 

  31. Segers P, De Backer J, Devos D, Rabben SI, Gillebert TC, Van Bortel LM et al. Aortic reflection coefficients and their association with global indexes of wave reflection in healthy controls and patients with Marfan's syndrome. Am J Physiol 2006; 290: H2385–H2392.

    CAS  Google Scholar 

  32. Safar ME, Blacher J, Pannier B, Guerin AP, Marchais SJ, Guyonvarc'h PM et al. Central pulse pressure and mortality in end-stage renal disease. Hypertension 2002; 39: 735–738.

    Article  CAS  Google Scholar 

  33. Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA et al. International Brachial Artery Reactivity Task Force. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery. J Am Coll Cardiol 2002; 39: 257–265.

    Article  Google Scholar 

  34. Papamichael CM, Aznaouridis KA, Karatzis EN, Karatzi KN, Stamatelopoulos KS, Vamvakou G et al. Effect of coffee on endothelial function in healthy subjects: the role of caffeine. Clin Sci (London) 2005; 109: 55–60.

    Article  CAS  Google Scholar 

  35. Mitchell GF, Parise H, Vita JA, Larson MG, Warner E, Keaney JF et al. Local shear stress and brachial artery flow-mediated dilation. The Framingham Heart Study. Hypertension 2004; 44: 134–139.

    Article  CAS  Google Scholar 

  36. Napoli C, Sica V, de Nigris F, Pignalosa O, Condorelli M, Ignarro LJ et al. Sulfhydryl angiotensin-converting enzyme inhibition induces sustained reduction of systemic oxidative stress and improves the nitric oxide pathway in patients with essential hypertension. Am Heart J 2004; 148: e5.

    Article  CAS  Google Scholar 

  37. Wilkinson IB, MacCallum H, Cockcroft JR, Webb DJ . Inhibition of basal nitric oxide synthesis increases aortic augmentation index and pulse wave velocity in vivo. Br J Clin Pharmacol 2002; 53: 189–192.

    Article  CAS  Google Scholar 

  38. Sudhir K, Chou TM, Hutchison SJ, Chatterjee K . Coronary vasodilation induced by angiotensin-converting enzyme inhibition in vivo. Differential contribution of nitric oxide and bradykinin in conductance and resistance arteries. Circulation 1996; 93: 1734–1739.

    Article  CAS  Google Scholar 

  39. Ghiadoni L, Magagna A, Versari D, Kardasz I, Huang Y, Taddei S et al. Different effect of antihypertensive drugs on conduit artery endothelial function. Hypertension 2003; 41: 1281–1286.

    Article  CAS  Google Scholar 

  40. Anderson TJ, Elstein E, Haber H, Charbonneau F . Comparative study of ACE-inhibition, angiotensin II antagonism, and calcium channel blockade on flow-mediated vasodilation in patients with coronary disease (BANFF study). J Am Coll Cardiol 2000; 35: 60–66.

    Article  CAS  Google Scholar 

  41. Ghiadoni L, Huang H, Magagna A, Buralli A, Taddei S, Salvetti A . Effect of acute blood pressure reduction on endothelial function in the brachial artery of patients with essential hypertension. J Hypertens 2001; 19: 547–551.

    Article  CAS  Google Scholar 

  42. Hirooka Y, Imaizumi T, Masaki H, Ando S, Harada S, Momohara M et al. Captopril improves impaired endothelium-dependent vasodilation in hypertensive patients. Hypertension 1992; 20: 175–180.

    Article  CAS  Google Scholar 

  43. Millgard J, Hagg A, Sarabi M, Lind L . Captopril, but not nifedipine, improves endothelium-dependent vasodilation in hypertensive patients. J Hum Hypertens 1998; 12: 511–516.

    Article  CAS  Google Scholar 

  44. Topouchian J, Brisac AM, Pannier B, Vicaut E, Safar M, Asmar R . Assessment of the acute arterial effects of converting enzyme inhibition in essential hypertension: a double-blind, comparative and crossover study. J Hum Hypertens 1998; 3: 181–187.

    Article  Google Scholar 

  45. Asmar R, Gosse P, Topouchian J, N'tela G, Dudley A, Shepherd GL . Effects of telmisartan on arterial stiffness in Type 2 diabetes patients with essential hypertension. J Renin Angiotensin Aldosterone Syst 2002; 3: 176–180.

    Article  CAS  Google Scholar 

  46. Vingerhoedt NM, Gilles R, Howes JB, Griffin M, Howes LG . Haemodynamic and pulse wave responses to intravenous infusions of angiotensin II during chronic telmisartan therapy in normal volunteers. J Renin Angiotensin Aldosterone Syst 2003; 4: 244–248.

    Article  CAS  Google Scholar 

  47. Morimoto S, Yano Y, Maki K, Sawada K . Renal and vascular protective effects of telmisartan in patients with essential hypertension. Hypertens Res 2006; 29: 567–572.

    Article  CAS  Google Scholar 

  48. Wojewodzka-Zelezniakowicz M, Chabielska E, Mogielnicki A, Kramkowski K, Karp A, Opadczuk A et al. Antithrombotic effect of tissue and plasma type angiotensin converting enzyme inhibitors in experimental thrombosis in rats. J Physiol Pharmacol 2006; 57: 231–245.

    CAS  PubMed  Google Scholar 

  49. Staessen JA, Wang JG, Thijs L . Cardiovascular prevention and blood pressure reduction: a quantitative overview updated until 1 March 2003. J Hypertens 2003; 21: 1055–1076.

    Article  CAS  Google Scholar 

  50. Stangier J, Su CA, van Heiningen PN, Meinicke T, van Lier JJ, de Bruin H et al. Inhibitory effect of telmisartan on the blood pressure response to angiotensin II challenge. J Cardiovasc Pharmacol 2001; 38: 672–685.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K A Aznaouridis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aznaouridis, K., Stamatelopoulos, K., Karatzis, E. et al. Acute effects of renin-angiotensin system blockade on arterial function in hypertensive patients. J Hum Hypertens 21, 654–663 (2007). https://doi.org/10.1038/sj.jhh.1002211

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jhh.1002211

Keywords

This article is cited by

Search

Quick links