Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Left ventricular mass and systolic dysfunction in essential hypertension

Abstract

A relation between left ventricular (LV) hypertrophy and depressed midwall systolic function has been described in hypertensive subjects. However, a strong confounding factor in this relation is concentric geometry, which is both a powerful determinant of depressed midwall systolic function and a correlate of LV mass in hypertension. To evaluate the independent contribution of LV mass to depressed systolic function, 1827 patients with never-treated essential hypertension (age 48 ± 12 years, men 58%) underwent M-mode echocardiography under two-dimensional guidance. Relative wall thickness was the strongest determinant of low midwall fractional shortening (r = −0.63, P < 0.0001). The significant inverse relation observed between LV mass and midwall fractional shortening (r = −0.43, P < 0.0001) persisted after taking into account the effect of relative wall thickness (partial r = −0.27, P < 0.0001). Within each sex-specific quintile of relative wall thickness, prevalence of subnormal afterload-corrected midwall systolic function was greater in subjects with, than in subjects without, LV hypertrophy (P < 0.05 for the first, third, fourth and fifth quintile). In a multiple linear regression analysis, both LV mass (P < 0.0001) and relative wall thickness (P < 0.0001) were independent predictors of a reduced midwall fractional shortening. In conclusion, the inverse association between LV mass and midwall systolic function is partly independent from the effect of relative wall thickness. LV hypertrophy is a determinant of subclinical LV dysfunction independently of the concomitant changes in chamber geometry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Shimizu G et al. Left ventricular midwall mechanics in systemic arterial hypertension: myocardial function is depressed in pressure-overload hypertrophy Circulation 1991 83: 1676–1684

    Article  CAS  PubMed  Google Scholar 

  2. de Simone G et al. Assessment of left ventricular function by the midwall fractional shortening/end-systolic stress relation in human hypertension J Am CollCardiol 1994 23: 1444–1451

    Article  CAS  Google Scholar 

  3. Schillaci G et al. Subclinical left ventricular dysfunction in systemic hypertension and the role of 24-hour blood pressure Am J Cardiol 2000 86: 509–513

    Article  CAS  PubMed  Google Scholar 

  4. de Simone G et al. Midwall left ventricular mechanics: an independent predictor of cardiovascular risk in arterial hypertension Circulation 1996 93: 259–265

    Article  CAS  PubMed  Google Scholar 

  5. Muiesan ML et al. Persistence of left ventricular hypertrophy is a stronger predictor of cardiovascular events than baseline left ventricular mass or systolic performance: a 10-year follow-up J Hypertens 1996 14 (Suppl 5): S43–S49

    Google Scholar 

  6. Verdecchia P et al. Prognostic value of midwall shortening fraction and its relation with left ventricular mass in systemic hypertension Am J Cardiol 2001 87: 479–482

    Article  CAS  PubMed  Google Scholar 

  7. Aurigemma GP, Silver KH, Priest MA, Gaasch WH . Geometric changes allow normal ejection fraction despite depressed myocardial shortening in hypertensive left ventricular hypertrophy J Am Coll Cardiol 1995 26: 195–202

    Article  CAS  PubMed  Google Scholar 

  8. de Simone G, Devereux RB, Celentano A, Roman MJ . Left ventricular chamber and wall mechanics in the presence of concentric geometry J Hypertens 1999 17: 1001–1006

    Article  CAS  PubMed  Google Scholar 

  9. Palmon LC et al. Intramural myocardial shortening in hypertensive left ventricular hypertrophy with normal pump function Circulation 1994 89: 122–131

    Article  CAS  PubMed  Google Scholar 

  10. Mayet J et al. Improvement in midwall myocardial shortening with regression of left ventricular hypertrophy Hypertension 2000 36: 755–759

    Article  CAS  PubMed  Google Scholar 

  11. Takahashi M, Sasayama S, Kawai C, Kotoura H . Contractile performance of the hypertrophied ventricle inpatients with systemic hypertension Circulation 1980 62: 116–126

    Article  CAS  PubMed  Google Scholar 

  12. Dong SJ et al. Left ventricular wall thickness and regional systolic function inpatients with hypertrophic cardiomyopathy. A three-dimensional tagged magnetic resonance imaging study Circulation 1994 90: 1200–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sadler DB et al. Systolic function in hypertensive men with concentric remodeling Hypertension 1997 30: 777–781

    Article  CAS  PubMed  Google Scholar 

  14. de Simone G et al. Relation of left ventricular diastolic properties to systolic function in arterial hypertension Circulation 2000 101: 152–157

    Article  CAS  PubMed  Google Scholar 

  15. Verdecchia P et al. Ambulatory blood pressure: an independent predictor of prognosis in essential hypertension [published erratum appears in Hypertension 1995; 25: 462] Hypertension 1994 24: 793–801

    Article  CAS  PubMed  Google Scholar 

  16. Sahn DJ, DeMaria A, Kisslo J, Weyman A the Committee on M-Mode Standardization of the American Society of Echocardiography. Recommendations regarding quantitation in M-Mode echocardiography: results of a survey of echocardiographic measurements Circulation 1978 58: 1072–1083

    Article  CAS  Google Scholar 

  17. Devereux RB et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings Am J Cardiol 1986 57: 450–458

    Article  CAS  PubMed  Google Scholar 

  18. de Simone G et al. Left ventricular mass and body size in normotensive children and adults: assessment of allometric relations and the impact of overweight J Am Coll Cardiol 1992 20: 1251–1260

    Article  CAS  PubMed  Google Scholar 

  19. Gaasch WH et al. Stress-shortening relations and myocardial blood flow in compensated and failing canine hearts with pressure-overload hypertrophy Circulation 1989 79: 872–883

    Article  CAS  PubMed  Google Scholar 

  20. Porcellati C et al. Low mid-wall fractional shortening identifies a subgroup of hypertensivepatients with increased left ventricular mass and ambulatory blood pressure J Hypertens 1993 11 (Suppl 5): S102–S103

    Google Scholar 

  21. Palmieri V et al. Effect of type 2 diabetes mellitus on left ventricular geometry and systolic function in hypertensive subjects: Hypertension Genetics Epidemiology Network (HyperGEN) Study Circulation 2001 103: 102–107

    Article  CAS  PubMed  Google Scholar 

  22. Gaasch WH et al. Left ventricular compliance in man: with special reference to normalized ventricular function curves Circulation 1972 45: 746–762

    Article  CAS  PubMed  Google Scholar 

  23. Buttrick P et al. The influence of dietary salt and plasma renin activity on myosin heavy chain gene expression in rat hearts Am J Hypertens 1993 6: 579–585

    Article  CAS  PubMed  Google Scholar 

  24. Mercadier JJ et al. Alpha-myosin heavy chain isoform and atrial size inpatients with various types of mitral valve dysfunction: a quantitative study J Am CollCardiol 1987 9: 1024–1030

    Article  CAS  Google Scholar 

  25. Capasso JM, Palackal T, Olivetti G, Anversa P . Left ventricular failure induced by long-term hypertension in rats Circ Res 1990 66: 1400–1412

    Article  CAS  PubMed  Google Scholar 

  26. Anversa P et al. Myocyte cell death and ventricular remodeling Curr Opin Nephrol Hypertens 1997 6: 169–176

    Article  CAS  PubMed  Google Scholar 

  27. Weber KT . Extracellular matrix remodeling in heart failure: a role for de novo angiotensin II generation Circulation 1997 96: 4065–4082

    Article  CAS  PubMed  Google Scholar 

  28. Olivetti G et al. Myocyte nuclear and possible cellular hyperplasia contribute to ventricular remodeling in the hypertrophic senescent heart in humans J Am Coll Cardiol 1994 24: 140–149

    Article  CAS  PubMed  Google Scholar 

  29. Pons-Lladó G et al. Myocardial cell damage in human hypertension J Am Coll Cardiol 2000 36: 2098–2103

    Article  Google Scholar 

  30. Ganau A et al. Relation of left ventricular hemodynamic load and contractile performance to left ventricular mass in hypertension Circulation 1990 81: 25–36

    Article  CAS  PubMed  Google Scholar 

  31. Levy D et al. The progression from hypertension to congestive heart failure JAMA 1996 275: 1556–1562

    Google Scholar 

  32. Gottdiener JS et al. Predictors of congestive heart failure in the elderly: the Cardiovascular Health Study J Am Coll Cardiol 2000 35: 1628–1637

    Article  CAS  PubMed  Google Scholar 

  33. Gardin JM et al. M-mode echocardiographic predictors of six-to-seven years incidence of coronary heart disease, stroke, congestive heart failure, and mortality in an elderly cohort: the Cardiovascular Health Study [abstract] Circulation 1999 100: I-396

    Google Scholar 

  34. Sakata Y et al. Renin angiotensin system-dependent hypertrophy as a contributor to heart failure in hypertensive rats: different characteristics from renin angiotensin system-independent hypertrophy J Am Coll Cardiol 2001 37: 293–299

    Article  CAS  PubMed  Google Scholar 

  35. Hansson L et al. Randomised trial of old and new antihypertensive drugs in elderlypatients: cardiovascular mortality and morbidity the Swedish Trial in Old Patients with Hypertension-2 study Lancet 1999 354: 1751–1756

    Article  CAS  PubMed  Google Scholar 

  36. Muiesan ML et al. Changes in midwall systolic performance and cardiac hypertrophy reduction in hypertensivepatients J Hypertens 2000 18: 1651–1656

    Article  CAS  PubMed  Google Scholar 

  37. Mayet J et al. Improvement in midwall myocardial shortening with regression of left ventricular hypertrophy Hypertension 2000 36: 755–759

    Article  CAS  PubMed  Google Scholar 

  38. Schussheim AE, Diamond JA, Phillips RA . Left ventricular midwall function improves with antihypertensive therapy and regression of left ventricular hypertrophy inpatients with asymptomatic hypertension Am J Cardiol 2001 87: 61–65

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Schillaci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schillaci, G., Vaudo, G., Pasqualini, L. et al. Left ventricular mass and systolic dysfunction in essential hypertension. J Hum Hypertens 16, 117–122 (2002). https://doi.org/10.1038/sj.jhh.1001302

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jhh.1001302

Keywords

This article is cited by

Search

Quick links