
Assessing exposure metrics for PM and birth weight models

SIMONE C. GRAYa, SHARON E. EDWARDSb AND MARIE LYNN MIRANDAb

aDepartment of Statistical Science, Duke University, Durham, North Carolina, USA
bNicholas School of the Environment, Duke University, Durham, North Carolina, USA

The link between air pollution exposure and adverse birth outcomes is of public health concern due to the relationship between poor pregnancy outcomes

and the onset of childhood and adult diseases. As personal exposure measurements are difficult and expensive to obtain, proximate measures of air

pollution exposure are traditionally used. We explored how different air pollution exposure metrics affect birth weight regression models. We examined the

effect of maternal exposure to ambient levels of particulate mattero10, o2.5 mm in aerodynamic diameter (PM10, PM2.5) on birth weight among infants

in North Carolina. We linked maternal residence to the closest monitor during pregnancy for 2000–2002 (n¼ 350,754). County-level averages of air

pollution concentrations were estimated for the entire pregnancy and each trimester. For a finer spatially resolved metric, we calculated exposure averages

for women living within 20, 10, and 5 km of a monitor. Multiple linear regression was used to determine the association between exposure and birth

weight, adjusting for standard covariates. In the county-level model, an interquartile increase in PM10 and PM2.5 during the entire gestational period

reduced the birth weight by 5.3 g (95% CI: 3.3–7.4) and 4.6 g (95% CI: 2.3–6.8), respectively. This model also showed a reduction in birth weight for

PM10 (7.1 g, 95% CI: 1.0–13.2) and PM2.5 (10.4 g, 95% CI: 6.4–14.4) during the third trimester. Proximity models for 20, 10, and 5 km distances

showed results similar to the county-level models. County-level models assume that exposure is spatially homogeneous over a larger surface area than

proximity models. Sensitivity analysis showed that at varying spatial resolutions, there is still a stable and negative association between air pollution and

birth weight, despite North Carolina’s consistent attainment of federal air quality standards.
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Introduction

Many epidemiological studies have been conducted to

investigate the effect of maternal exposure to air pollution

on adverse pregnancy outcomes (Bobak, 2000; Ha et al.,

2001; Chen et al., 2002; Dugandzic et al., 2006; Bell et al.,

2007). Results of these studies have shown that exposure to

air pollution may elevate the risk of adverse birth outcomes,

including low birth weight (LBW), preterm delivery, and

small for gestational age (Ritz et al., 2000; Vassilev et al.,

2001; Lee et al., 2003; Yang et al., 2003; Lin et al., 2004;

Mannes et al., 2005; Parker et al., 2005).

Poor birth outcomes are significant predictors of neonatal

mortality and morbidity (McCormick, 1985). Evidence

shows that children born LBW, preterm delivery, or small

for gestational age are at an increased risk for both

short-term neonatal morbidity and long-term health effects

(Hack et al., 1995; Lemons et al., 2001). Such effects include

mental retardation (Lorenz et al., 1998), severe vision loss

(Crofts et al., 1998), deafness (Lorenz et al., 1998), learning

disabilities (Resnick et al., 1999; Saigal et al., 2000), motor

impairment (Ross et al., 1990), and cerebral palsy (Kuban

and Leviton, 1994), as well as hypertension, cardiovascular

disease, and type 2 diabetes in adulthood (Ashdown-

Lambert, 2005).

Although the biological mechanisms by which air

pollutants may influence birth weight and fetal growth

are as yet unknown, studies suggest that air pollution

exposure during pregnancy may lead to placental inflamma-

tion, which impairs placental function, and chronic inflam-

mation may in turn result in growth restriction (Lee

et al., 2003). Data also suggest that fetuses may be more

prone to genetic damage and process toxicants less efficiently

than adults (Perera et al., 1999). Perera et al. (1999)

also propose that increased DNA adducts in the fetus

relative to the mother could result in lower levels of

detoxification enzymes and decreased DNA repair efficiency

in the fetus.

Epidemiologists and policy makers are often interested in

the effect of particulate air pollution on susceptible popula-

tions; (NRC, 1998) thus pregnant women are of particular

concern. As the National Research Council (NRC) identified

at-risk subpopulations as a high priority research task,

several studies have been conducted to better examine the

effects of PM exposure and adverse pregnancy outcomes

(Resnick et al., 1999; Ritz et al., 2000; Bell et al., 2007).
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In the last of the four reports produced by the NRC in

2004, the group determined that more research needs to be

done to clarify uncertainties about impacts of maternal

exposure to PM on pregnancy and to understand how

environmental factors can affect adverse pregnancy outcomes

(NRC, 2004).

Although much attention has been given to studying the

relationship between adverse pregnancy outcomes and air

pollution, many of these studies are limited to sparsely

located monitoring station data (Bobak, 2000; Bell et al.,

2007; Hansen et al., 2008). These studies use average

measurements calculated from monitoring stations within

city or county limits, or postal codes. Epidemiologists are

aware that measurements obtained from ambient monitoring

stations may not be representative of personal exposure for

all subjects within a predetermined geographic area (Jerrett

et al., 2005). Consequently, the use of personal exposure

measures based on city or county levels may misclassify

individual exposure.

While many studies have found significant results, the

traditional analyses may misclassify exposure because of the

way the exposure is measured and modeled (Thomas et al.,

1993; Dominici et al., 2003). Using measurements based on

residing either within a certain geographic area or proximity

to a monitoring station as a proxy for personal exposure

assumes that air pollution levels are spatially homogeneous

across the defined geographic regions. Although lacking

precision, this method of estimating exposure for an

individual or a population has been used in air pollution

and health effects studies (Dockery et al., 1993; Samet et al.,

2000; Pope et al., 2002), as collection of accurate personal

level exposures is often difficult and expensive to obtain. In

the presence of potential measurement error, it is important

to determine whether these measurements affect the expo-

sure–response relationship.

In this paper, we evaluate how robust the air pollution

and birth weight relationship is to different air pollu-

tion measurements. For comparability to other studies

(Chen et al., 2002; Rogers and Dunlop, 2006; Bell et al.,

2007), we use air pollution metrics based on county averages

for the State of North Carolina. We then use buffering

schemes associated with proximity models of 20-, 10-, and

5-km radii and compare how these different exposure

metrics affect the birth weight model. As previous studies

have used distances ranging from 2 to 50 km (Yang et al.,

2003; Mannes et al., 2005; Ritz et al., 2006), we chose a

range of distances for greater cross-study comparability.

Our goal is to investigate how birth weight regression

models change when different exposure metrics are used.

Importantly, North Carolina communities are typically

below the federal standards for both PM10 and PM2.5,

therefore these analyses have direct relevance to the policy

debate regarding setting regulatory standards to protect

public health.

Methods

Birth Data
The North Carolina Detailed Birth Record (NCDBR) data

were obtained from the North Carolina State Center for Health

Statistics. The NCDBR data contain information on both birth

outcomes and parental demographics for all registered births in

North Carolina. We limited our analysis to the years 2000–2002

(n¼ 350,754). The recorded birth information in the NCDBR

used in this study included gestational age (weeks), infant sex,

birth weight, congenital anomalies, and year of birth. The

maternal characteristics recorded in the NCDBR included

residential address, age, marital status, education, race and

ethnicity, alcohol and tobacco use, plurality, birth order, and

the trimester in which prenatal care began.

To link births from the NCDBR to the air pollution data,

we street geocoded the residential addresses in the dataset at

the individual record level (all spatial data management was

performed using ArcGIS 9.2 produced by ESRI, Redlands,

CA). The total births successfully geocoded using the maternal

residence at the time of delivery in North Carolina can be seen

in Figure 1. Approximately, 17% of the total births could

not be geocoded due to unmatched address locations. To

determine whether systematic differences exist between the full

geocoded dataset and the subsets for which air pollution data

were available, summary statistics (data not shown) were

calculated using Census data from the zip code links and the

DBR data. Differences were not significant enough to

undermine the analytical work presented here.

We excluded multi-fetal births (3.3%), and infants

characterized by congenital anomalies (0.9%). These exclu-

sions were chosen, as we sought to focus on those

pregnancies that could reasonably be expected to go to term

and deliver at a normal birth weight. We also excluded

women o15 and 444 years (0.3%) with reported alcohol

consumption (0.6%). As 95% of the women in the dataset

self-declared as non-Hispanic white, non-Hispanic black, or

Hispanic, we excluded other races/ethnicities due to the small

sample size for other minority groups. We excluded births

with gestation o32 and 444 weeks (2.2%), birth weight

o1000 and 45500 g (1.0%), impossible birth weight and

gestation combinations (0.1%) (Alexander et al., 1996), and

mothers with any missing data on covariates (1.0%), leaving

259,962 cases. For the county-level model, we focused on

Figure 1. Total geocoded births in North Carolina.
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women who lived in a county with an active monitoring station,

whereas for the proximity models, we used only women within

a 20-, 10-, and 5-km buffer of a monitoring station.

Air Pollution Data
The air pollution datasets for PM10 and PM2.5 were obtained

from the US EPA Air Quality System (AQS) for 1999–2002

(US Environmental Protection Agency, 2006a). The analyses

used births between the years of 2000–2002, and air pollution

exposures from 1999–2002, as exposures for some 2000

births occurred in 1999. The AQS data contained the daily

24-h average concentration (mg/m3) for PM10 and PM2.5.

There were between 27 and 37 active PM10 monitors and

between 37 and 41 active PM2.5 monitors in North Carolina

during 1999–2002. The monitors recorded pollution mea-

surements everyday, every 3 days, or every 6 days with some

monitors being added to or removed from operation during

the years of the study. The difference in the frequency of

recordings at certain monitoring stations is random and

should not introduce any bias into the study. Locations of

the PM10 and PM2.5 monitors in North Carolina can be seen

in Figure 2.

Maternal Exposure Assessment
To estimate air pollution exposure for the proximity models,

each mother’s residence at the time of delivery was linked to

the closest active monitor. The weeks of exposure were

calculated based on the actual weeks of pregnancy as

recorded in the NCDBR. As birth date and gestational age

were supplied as part of the NCDBR data, we calculated

backwards the number of weeks of gestation from the

delivery date to determine an estimated date of conception

for each woman. Average maternal exposure was calcu-

lated for each pollutant by averaging the daily or weekly data

of the closest monitoring station for each trimester.

Trimesters were constructed based on the following categor-

ization: 1–13 weeks of gestation, 14–26 weeks of gestations,

and 27 weeks of gestation until birth. Exposure estimates

averaged over the entire pregnancy were also calculated for

each pollutant.

Figure 2. Location of PM10 and PM2.5 monitors and distance buffers.
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The AQS data were not available for every day and week

of the years 1999–2002. For each birth, the completeness of

the exposure dataset was identified by taking the number of

weeks of gestation and dividing it by the number of AQS

concentration values for that birth. If the birth had more

than 75% of the data and there was no more than one

consecutive missing concentration value for that birth, then

the average of the concentrations for the weeks before and

after the missing value were used as a proxy for the exposure

concentration during that week. If there was more than one

consecutive missing value for a birth, then that birth was not

included in the dataset because a sufficient proxy for the

2 weeks or more of missing air quality data was not available.

After all exclusion criteria, exposure estimates were calculated

for 195,141 mothers for at least one of the pollutants of

interest.

Statistical Analysis
Multiple linear regression modeling was used to determine

the association between exposure to the pollutants of interest,

PM10 and PM2.5, and birth weight. Using birth weight as a

continuous outcome variable, we controlled for gestational

age (32–34, 35–36, 37–38, 39–40, 41–42, and 43–44 weeks),

maternal race/ethnicity (non-Hispanic black, non-Hispanic

white, or Hispanic), maternal education (o9, 9–11, 12, 13–15,

and 415 years), maternal age (15–19, 20–24, 25–29, 30–34,

35–39, and 40–44 years), trimester prenatal care began,

tobacco use during pregnancy (yes or no), marital status

(married or unmarried), year of birth, firstborn (yes or no),

and infant sex (male or female) for PM10 and PM2.5. The

exposure estimates were considered as continuous variables.

We then examined the exposure–response relationship with

county-wide estimates and the estimates for mothers within

20, 10, and 5 km of a monitoring station.

A baseline model without the air pollution variables was

constructed to examine which of the standard covariates

mentioned above affect birth weight in our sample. We then

constructed separate models for PM10 and PM2.5. For

comparability with previous studies, we constructed models

using all three trimester exposure estimates in the same

model, as well as models with a pregnancy-long estimate

(Maisonet et al., 2001; Glinianaia et al., 2004; Salam et al.,

2005). All risk factors considered were observed as being

associated with birth weight in recent literature. (Bobak,

2000; Maroziene and Grazuleviciene, 2002; Liu et al., 2003;

Dugandzic et al., 2006; Bell et al., 2007),

Results

Our analysis included estimating pollution exposures for

sample populations at the county level, and within the

20-, 10-, and 5-km radial buffers surrounding monitors. At

the county level, there were 195,141 observations with the

restrictions described above, and 167,851, 110,555, and

56,043 births at 20, 10, and 5 km, respectively. Table 1 shows

the summary statistics for each of the four sample popula-

tions (county and 20-, 10-, and 5-km buffers). Among the

195,141 county-level births, the mean birth weight was

3368 g and the prevalence of LBW was 5.4%. Approxi-

mately, 11% reported smoking during pregnancy. Most of

the mothers were non-Hispanic white (61%), married (68%),

and with more than a high-school education (52.8%). The

Table 1. Summary statistics of the study population with exposure
estimates for either PM10 or PM2.5.

20 km 10 km 5km County

Total births 167,851 110,555 56,043 195,141

Mean BWT

(g)±SD

3372±528.4 3353±530.5 3321±531.9 3368±530.9

% LBW 5.2 5.6 6.3 5.4

Mean gestation

(weeks)±SD

38.9±1.6 38.9±1.6 38.9±1.7 38.9±1.6

32–34 (%) 2.0 2.2 2.3 2.2

35–36 (%) 5.5 5.6 6.0 5.7

37–38 (%) 24.9 25.0 25.1 24.6

39–40 (%) 54.8 54.4 54.0 54.7

41–42 (%) 11.3 11.4 11.1 11.4

43–44 (%) 1.4 1.4 1.5 1.4

% Male 50.9 51.0 50.7 51.0

% Firstborn 42.8 43.3 42.3 42.9

% Trimester prenatal care

First 86.2 84.6 81.2 86.0

Second 10.8 12.0 14.6 11.0

Third 1.7 2.0 2.5 1.7

None 0.7 0.9 1.2 0.8

Unknown 0.6 0.5 0.5 0.5

% Race/ethnicity

NHW 61.7 52.9 41.9 61.1

NHB 25.7 32.2 39.4 26.1

HISP 12.6 14.9 18.8 12.8

% Maternal education (years)

o9 5.5 6.6 9.0 5.7

9–11 13.8 15.1 19.2 13.9

12 27.5 28.0 29.3 27.7

13–15 22.3 21.5 19.5 22.3

415 31.0 28.8 23.0 30.5

% Maternal age (years)

15–19 10.6 11.6 13.9 10.8

20–24 25.4 27.4 30.3 25.7

25–29 26.8 26.3 25.2 26.9

30–34 24.7 23.0 20.1 24.4

35–39 10.7 9.9 8.9 10.5

40–44 1.8 1.7 1.6 1.8

% Tobacco use 11.2 10.7 11.4 10.9

% Married 68.4 63.1 54.0 68.2

BWT, birth weight; HISP, Hispanic; LBW, low birth weight; NHB, non-

Hispanic black; NHW, non-Hispanic white.
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mean PM10 and PM2.5 levels are higher than the median, a

phenomenon driven by a few geographic areas with higher

pollution levels (e.g., the greater Charlotte area).

The descriptive characteristics of the mothers living within

20 and 10 km of a monitoring station are similar to those in

the county-level dataset. Some maternal demographics

change with proximity to the monitoring station, including

maternal race/ethnicity, maternal education, and marital

status. Moving from 20 km away to 5 km away from a

monitoring station increases the non-Hispanic black popula-

tion by approximately 14% and Hispanic population by

6.2%. There is also a decrease in the mothers having more

than a high-school education, as well as those who are

married, as residence gets closer to a monitor. The incidence

of LBW increases from 5.2% at 20 km to 6.3% at the 5 km

buffer. The means±SD along with the interquartile range

(IQR), and 25th, 50th and 75th percentiles of the average

exposure of each pollutant are shown in Table 2 for the

county and 20-km models. Summary statistics of the

pollution averages for the 10- and 5-km models (not shown)

were similar to the results at the 20-km level. For the 10-km

buffer, there were 75,111 and 86,573 observations for PM10

and PM2.5, respectively. At the 5-km level, there were 35,212

and 42,782 observations for PM10 and PM2.5, respectively.

Average values of PM10 (PM2.5) concentration levels were

approximately 22.7 (14.3) mg/m3. The PM2.5 average is

below the National Ambient Air Quality Standard

(NAAQS) annual mean of 15 mg/m3 and there is currently

no annual PM10 standard. The correlations between PM10

and PM2.5 during each trimester remain relatively consistent

with r2 B0.7. The correlation between PM10 and PM2.5

exposure during the entire pregnancy was 0.63. Table 3 shows

the correlation coefficients among trimester exposures for

PM10 and PM2.5 at the county-level model. Similar

correlations were obtained at the 20-, 10-, and 5-km level.

In all of the baseline models with no air pollution

estimates, the standard covariates carried the expected signs

with positive correlation between birth weight and longer

gestation (440 weeks), male sex, more than a high-school

level education, and higher parity; and negative correlation

between birth weight and tobacco use during pregnancy,

unmarried status, less than high-school education, minority

race groups, firstborns, mothers younger than 24 years and

older than 40 years, and mothers who started prenatal care

later in pregnancy. All covariates were statistically significant

(Po001) and were included in the models with pollution

estimates. Table 4 shows the baseline models for PM10 at the

county level and the 20 km level. Similar results (not shown)

were obtained for both pollutants at the county level and the

20-, 10-, and 5-km buffer levels.

In the multiple regression models for the county-level

measure of air pollution exposure, PM10 and PM2.5 exposure

in the third trimester and during the entire pregnancy were

negatively associated with birth weight (Figure 3). An IQR

increase in PM10 and PM2.5 during the entire gestational

period reduced birth weight by 5.3 g (95% CI: 3.3–7.4) and

4.6 g (95% CI: 2.3–6.8), respectively. This model also

showed a reduction in birth weight for PM10 (7.1 g, 95%

CI: 1.0–13.2) and PM2.5 (10.4 g, 95% CI: 6.4–14.4) during

the third trimester.

Proximity models for 20, 10, and 5 km distances showed

results similar to the county-level models (Figure 3). During

the entire gestational period, there were birth weight

reductions between 7 and 8 g for PM10 and 7 and 10 g for

PM2.5 per IQR increase in each pollutant. Exposure during

the third trimester also showed significant results similar to

Table 2. Pollutant averages±SD and IQR of pollutants by pregnancy period.

Exposure period Pollutant County level; PM10 (n¼ 178,356); PM2.5 (n¼ 174,933) 20 km; PM10 (n¼ 117,279); PM2.5 (n¼ 134,232)

Mean±SD IQR Quartiles Mean±SD IQR Quartiles

25% 50% 75% 25% 50% 75%

Trimester 1 PM10 19.6±5.5 5.5 16.2 17.8 21.8 23.0±5.4 7.2 19.0 22.5 26.2

PM2.5 13.5±1.5 1.9 12.5 13.7 14.3 15.0±3.0 4.2 12.7 12.5 16.8

Trimester 2 PM10 25.1±5.3 7.3 21.0 24.3 28.3 22.6±4.9 6.6 19.1 22.4 25.6

PM2.5 15.3±1.7 2.1 14.5 15.6 16.6 14.4±2.6 3.9 12.7 14.4 16.7

Trimester 3 PM10 26.5±5.2 7.9 22.6 25.7 30.5 22.4±4.9 6.4 19.0 22.3 25.4

PM2.5 18.2±2.8 3.1 16.8 18.3 19.9 14.6±2.6 3.9 12.3 14.3 16.5

Entire pregnancy PM10 23.7±4.9 4.8 20.7 22.7 25.5 22.6±3.8 3.8 20.5 22.2 24.3

PM2.5 15.7±1.6 1.6 15.0 15.7 16.6 14.7±1.7 2.2 13.7 14.9 15.9

IQR, interquartile range.

Table 3. Pearson’s correlation coefficients between trimester pollutions
estimates at the county level.

PM10 PM2.5

T1 T2 T3 T1 T2 T3

PM10 T1 1 PM2.5 T1 1

T2 0.44 1 T2 0.23 1

T3 0.16 0.42 1 T3 �0.08 0.24 1
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the county-level models for both pollutants. PM2.5 showed

birth weight reductions at 20 and 10 km, but not at 5 km or

the county-level model. We also ran logistic models to see

whether air pollution exposure predicted LBWor very LBW

(results not shown here). The only statistically significant

results were for pregnancy-long PM2.5 exposure and the odds

ratios were very close to 1.

Discussion

County-level models assume that air pollution exposure is

spatially homogeneous over a larger surface area than city-

wide or neighborhood-level models. If air pollution concen-

trations are heterogeneous, with variability that increases as

distance from the pollution source increases, then the

associated measurement error may also be larger in exposure

measurements based on large geographic regions. This

misclassification in the pollution concentration could under-

estimate the true effects of air pollution exposure. For this

reason, we explored the relationship between both county

and neighborhood-level averages of PM. This sensitivity

analysis compared birth weight regression results using

exposure metrics for PM10 and PM2.5 at various spatial

resolutions from 2000 to 2002 in North Carolina. We

observe some differences in both the magnitude of the

coefficients and the significance of the estimates as well. The

model for the entire gestational period showed both

significant and negative associations for PM10 and PM2.5

with all the exposure metrics used.

Basu et al. (2004) explore the use of different spatial

measures of exposure in birth weight regression models and

also found differences between the various metrics in a study

in California in 2000. Basu et al. found that county-level

measures of PM2.5 produced a stronger reduction in birth

weight than exposure measures within a 5-mile radius of a

Table 4. Change in birth weight in the baseline models for PM10.

County PM10 20 km PM10

Male sex 127.3 (123.4 to 131.1) 126.4 (107.1 to 145.8)

Mat edu (years)

o 9 �40.2 (�50.4 to �29.9) �41.1 (�54.5 to �27.8)
9�11 �33.9 (�40.3 to �27.5) �39.6 (�47.0 to �32.2)
12

13�15 22.8 (17.1 to 28.5) 18.5 (11.9 to 25.1)

415 24.6 (18.6 to 30.6) 21.9 (15.0 to 28.9)

Maternal tobacco use �188.5 (�195.2 to �181.9) �194.7 (�202.6 to �186.9)
Maternal race/ethnicity

NHW

NHB �179.2 (�184.3 to �174.1) �178.8 (�184.6 to �172.9)
HISP �70.5 (�77.5 to �63.7) �75.6 (�83.4 to �67.8)

Trimester of prenatal care

First

Second �11.4 (�17.9 to �4.9) �11.6 (�19.3 to �3.9)
Third �35.2 (�50.1 to �20.3) �18.1 (�36.0 to �0.1)
No care �19.1 (�41.8 to 3.5) �29.7 (�56.8 to �2.61)

Maternal age (years)

15�19 �42.6 (�51.5 to �33.7) �40.8 (�51.2 to �30.5)
20�24 �31.5 (�37.8 to �25.2) �32.7 (�40.0 to �25.5)
25�29 �7.1 (�12.6 to �1.5) �6.9 (�13.2 to �0.5)
30�34
35�39 �2.8 (�9.9 to 4.4) �3.7 (�12.0 to 4.6)

40�44 �34.9 (�49.8 to �19.9) �28.5 (�45.6 to �11.3)

Firstborn non 114.4 (110.2 to 118.7) 115.1 (110.1 to 120.1)

Gestational length (weeks)

32�34 �1285.1 (�1298.6 to �1271.7) �1287.8 (�1303.9 to �1271.7)
35�36 �714.5 (�723.1 to �705.9) �714.3 (�724.3 to �704.3)
37�38 �278.5 (�283.2 to �273.8) �278.2 (�283.6 to �272.8)
39�40
41�42 186.8 (180.5 to 193.1) 185.8 (178.5 to 193.1)

43�44 256.7 (240.4 to 273.0) 240.5 (221.1 to 259.8)

HISP, Hispanic; Mat edu, maternal education; NHB, non-Hispanic black; NHW, non-Hispanic white.
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monitoring station. This California study limited analysis to

non-Hispanic white and Hispanic mothers in California,

where air pollution levels are relatively high compared with

North Carolina. Although there are differences in the

demographic composition and the air pollution levels, similar

results were seen when comparing county-level models to

proximity models.

In another study using data from Connecticut and

Massachusetts, Bell et al. (2007) saw reductions in birth

weight at the county level during the entire pregnancy and the

third trimester for both PM10 and PM2.5, which is consistent

with the results in our study. This study had average PM

levels similar to those in NC, withmeans of 22.3 and 11.9mg/m3

for PM10 and PM2.5, respectively. Comparable results in the

reduction of birth weight per IQR increase in PM10 and

PM2.5 were seen in the North Carolina county-level models

and the models presented in the Bell et al. analysis.

Other studies have also found an inverse relationship

between exposure to PM and reduction in birth weight, using

both county-level and neighborhood-level exposure metrics.

Dugandzic et al. (2006), Gouveia et al. (2004), and Yang

et al. (2003) all found a significant relationship in the first

trimester for PM10 exposure and birth weight in a study in

Taiwan, Canada, and Brazil, respectively. Salam et al. (2005)

in a California study found that the exposure to PM10 during

the third trimester was negatively associated with birth

weight. Mannes et al. (2005) showed in a study in Australia

that both PM10 and PM2.5 were associated with reduced

birth weight during the second trimester as well as during the

last month of pregnancy. In California, Parker et al. (2005)

found a negative effect of PM2.5 on birth weight for all three

trimesters when comparing the highest and lowest levels of

PM2.5. It is still unclear which exposure period is most

affected and further analysis is certainly needed.

A limitation to this research is the quantity and placement

of active PM monitoring sites each year. Monitoring sites are

part of a long-term fixed network that was established for

regulatory purposes, rather than for health effects research.

In some geographic areas, such as those closer to major cities

and roadways, there is a greater density of monitors.

Figure 3. Changes in birth weight in the PM models.
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Monitoring data from these areas are more representative of

ambient maternal exposures than from areas where the

monitors were more distal from maternal residences. Thus,

the exposures of women who lived in more urban areas were

more accurately captured than those women who were at the

far range of the 20-km buffer set for this study. In addition,

individual exposure measurements calculated using ambient

concentration readings from monitoring stations introduce

misclassification errors into the study. Without using

personal monitors, one cannot truly capture actual exposure.

We also make the assumption that pregnant women did

not relocate during their pregnancy. Other relevant maternal

information such as gestational weight gain, maternal

nutrition, and indoor and occupational exposure estimates

are factors that may affect birth weight but could not be

examined. In addition, use of assisted reproductive technol-

ogy, even among singleton pregnancies, is a known risk

factor for PTB (Myers et al., 2008), but cannot be controlled

for in our analyses (data not available).

This study examined only PM10 and PM2.5, which are

highly correlated with each other and possibly with other

pollutants. The PM10 monitors used in this study also

measure ambient levels of PM2.5. Consequently, the lower

birth weight associated with PM10 may in fact be indis-

tinguishable from the birth weight effects attributable to

PM2.5. To address this issue, the EPA’s Clean Air Scientific

Advisory Committee has recommended that the Agency

develop a new indicator for particles between 2.5 and 10mm
in diameter (PM2.5�10) because PM10 sampling is an

imprecise measure of coarse particulate matter in this size

range (US Environmental Protection Agency, 2006b). At

present, there is inadequate information on PM2.5�10
ambient levels, exposure, and health risks. In the October

2006 revision to the PM NAAQS, however, EPA retained

PM10 as the indicator for coarse particles.

In North Carolina, the annual NAAQS for PM2.5 is

15.0mg/m3 averaged over a 3-year period for each monitor

(US Environmental Protection Agency, 2004). In October

2006, the EPA rescinded the 50mg/m3 annual standard for

PM10, citing a lack of association between long-term

exposure to current ambient levels of PM10 and adverse

health effects. Consequently, there is currently no annual

standard for PM10. Although average annual PM2.5 levels in

North Carolina are less than the standard of 15 mg/m3, we

still see robust relationships between PM2.5 exposure and

birth weight. Similarly, PM10 levels are less than half of the

previous NAAQS of 50 mg/m3, yet maternal exposure to

PM10, both during the third trimester and during the entire

pregnancy, is negatively associated with birth weight.

Although our results show a small reduction in birth weight

for the entire pregnancy across both pollutants, average county

levels of PM10 and PM2.5 (22.7, 14.3) were associated with a

reduction in mean birth weight of 25.1 g (95% CI: 20.2–29.9)

and 41.0g (95% CI: 30.9–51.1), respectively. These reductions

are meaningful in North Carolina, and potentially even more so

in regions with air quality below the NAAQS.

Exposure to PM pollution during pregnancy is an

important public health issue. In our study, the county-level

model produced consistent results with the proximity model

for estimating reductions in birth weight during the entire

pregnancy and in the third trimester for both PM10 and

PM2.5. There were some differences in the first trimester for

PM10 and the second trimester for PM2.5. In both cases,

there was a reduction in birth weight at the 20- and 10-km

level but not at the county level or the 5-km level.

Our study provides comparability to previous studies by

examining the relationship between birth weight and average

county levels of PM10 and PM2.5. In addition, we go beyond

the previous studies by constructing proximity models using

20-, 10-, and 5-km buffers around monitoring stations. These

additional analyses indicate that the statistical significance and

negative relationship between birth weight and air pollution is

robust to the choice of air pollution metrics at substantially

different geographic scales. Despite North Carolina’s consistent

attainment of federal air quality standards, we still see a stable

and negative association between both pollutants and birth

weight in the third trimester and during the entire pregnancy at

various spatial resolutions.
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