Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Assessment of exposure in epidemiological studies: the example of silica dust

Abstract

Exposure to crystalline silica ranks among the most frequent occupational exposures to an established human carcinogen. Health-based occupational exposure limits can only be derived from a reliable dose–response relationship. Although quartz dust seems to be a well-measurable agent, several uncertainties in the quantification of exposure to crystalline silica can bias the risk estimates in epidemiological studies. This review describes the silica-specific methodological issues in the assessment of exposure. The mineralogical forms of silica, the technologies applied to generate dust, protective measures, and co-existing carcinogens are important parameters to characterize the exposure condition of an occupational setting. Another methodological question concerns the measurement of the respirable dust fraction in the worker's breathing zone and the determination of the quartz content in that fraction. Personal devices have been increasingly employed over time, whereas norms for the measurement of respirable dust have been defined only recently. Several methods are available to analyse the content of crystalline silica in dust with limits of quantitation close to environmental exposure levels. For epidemiological studies, the quartz content has frequently not been measured but only calculated. To develop a silica-dust database for epidemiological purposes, historical dust concentrations sampled with different devices and measured as particle numbers have to be converted in a common exposure metric. For the development of a job-exposure matrix (JEM), missing historical data have to be estimated to complete the database over time. Unknown but frequently high-exposure levels of the past contribute largely to the cumulative exposure of a worker. Because the establishment of a JEM is crucial for risk estimates, sufficient information should be made accessible to allow an estimation of the uncertainties in the assessment of exposure to crystalline silica. The impressive number of silica dust measurements and the evaluation of methodological uncertainties allow recommendations for a best practice of exposure assessment for epidemiological studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Attfield M.D., and Hearl F.J. Application of data on compliance to epidemiological assessment of exposure–response: The case of data on exposure of United States coal miners. Occup Hyg 1996: 3: 177–184.

    CAS  Google Scholar 

  • Bagschik U., Böckler M., Chromy W., Dahmann D., Gabriel S., Guldner K., et al. Quarzexposition am Arbeitsplatz. HVBG, Sankt Augustin, 2006.

    Google Scholar 

  • Barenblatt G.I., Patzek T.W., Prostokishin V.M., and Silin D.B. Oil deposits in diatomites: a new challenge for subterranean mechanics. Soc Petrol Eng 2002: 75230: 1–9.

    Google Scholar 

  • Bauer H.D. Staubjahre — Möglichkeiten ihrer Ermittlung unter Einbeziehung unterschiedlicher Meßsysteme und Verfahren der Arbeitseinsatzlenkung — Bearbeitungshinweise. Hauptverband der gewerblichen Berufsgenossenschaften (HVBG), Sankt Augustin, 1995.

    Google Scholar 

  • Bauer H.D. Studie zur retrospektiven Analyse der Belastungssituation im Uranerzbergbau der ehemaligen SDAG Wismut mit Ausnahme der Strahlenbelastung für die Zeit von 1946 bis 1990. HVBG, Sankt Augustin, 2000.

    Google Scholar 

  • Bauer H.D., and Bruckmann E. Neues gravimetrisches Staubsammelgerät zur Messung des atembaren Feinstaubes nach den MAK-Werten. Kompass 1974: 84: 96–102.

    Google Scholar 

  • Bauer H.D., Dahmann D., and Stoyke G. Vergleichsmessungen zwischen Konimetrie und gravimetrischer Feinstaubprobennahme in Uranerzlagerstaetten von Sachsen und Thueringen. Gefahrstoffe-Reinhaltung der Luft 1998: 58: 153–160.

    CAS  Google Scholar 

  • Beadle D.G. The relationship between the amount of dust breathed and the development of radiological signs of silicosis: an epidemiological study of South African gold miners. In: Walton WH (ed.). Inhaled Particels III. Pergamon Press, Oxford, 1971, pp 953–964.

    Google Scholar 

  • Bochmann F., Blome H., Rödelsperger K., Woitowitz H.J., Morfeld P., and Piekarski C. Umrechnung von Langzeitgrenzwerten auf schichtbezogene Grenzwerte für Stoffe mit langsamen Wirkungseintritt wie z. B. Quarzfeinstaub. Gefahrstoffe-Reinhaltung der Luft 1997: 57: 441–444.

    CAS  Google Scholar 

  • Brown D., Kaplan S., Zumwalde R., Kaplowitz M., and Archer V. Retrospective cohort mortality study of underground gold mine workers. In: Goldsmith D., Winn D., Shy C. (Eds.). Silica, Silicosis, and Lung Cancer. Praeger, New York, 1986, pp 311–336.

    Google Scholar 

  • Bruch J., Rehn S., Rehn B., Borm P.J.A., and Fubini B. Variation of biological responses to different respirable quartz flours determined by a vector model. Int J Hyg Environ Health 2004: 207: 203–216.

    Article  CAS  Google Scholar 

  • Buechte S.F., Burggraf C., Langefeld O., McClure W., Morfeld P., and Piekarski C. Comparative Dust Sampling Programm of Respirable Coal Mine Dust Concentrations Taken During 2002 at US Coal Mines Applying German and American Dust Sampling Strategies. Tijdschrift voor toegepaste Arbowetenschap, Eindhoven, 2004.

    Google Scholar 

  • Cakmak G.D., Schins R.P.F., Shi T.M., Fenoglio I., Fubini B., and Borm P.J.A. In vitro genotoxicity assessment of commercial quartz flours in comparison to standard DQ12 quartz. Int J Hyg Environ Health 2004: 207: 105–113.

    Article  CAS  Google Scholar 

  • CEN EN 481. Workplace atmospheres: size fraction definitions for measurement of airborne particles. European Committee for Standardization 1993.

  • Checkoway H., Heyer N.J., Seixas N.S., Welp E.A.E., Demers P.A., Hughes J.M., et al. Dose–response associations of silica with nonmalignant respiratory disease and lung cancer mortality in the diatomaceous earth industry. Am J Epidemiol 1997: 145: 680–688.

    Article  CAS  Google Scholar 

  • Chen W., Zhuang Z., Attfield M.D., Chen B.T., Gao P., Harrison J.C., et al. Exposure to silica and silicosis among tin miners in China: exposure–response analyses and risk assessment. Occup Environ Med 2001: 58: 31–37.

    Article  CAS  Google Scholar 

  • Dahmann D., and Bauer H.D. Bestand ein “Faserproblem” bei der Gewinnung von Kieselgur? Kompass 2002: 112: 3–5.

    Google Scholar 

  • Dahmann D., Hartfiel G.D., and Jackisch J. Intercomparison and performance of stationary aerosol samplers. Gefahrstoffe — Reinhaltung der Luft 2001: 61: 201–206.

    CAS  Google Scholar 

  • DIN EN 13205. Workplace Atmospheres — Assessment of Performances of Instruments for Measurement of Airborne Particle Concentrations. Beuth, Berlin, 2002.

  • Dosemeci M., Chen J.Q., Hearl F., Chen R.-G., McCawley M., Wu Z., et al. Estimating historical exposure to silica among mine and pottery workers in the People's Republic of China. Am J Ind Med 1993: 24: 55–66.

    Article  CAS  Google Scholar 

  • Dosemeci M., McLaughlin J.K., Chen J.-Q., Hearl F., Chen R.-G., McCawley M., et al. Historical total and respirable silica dust exposure levels in mines and pottery factories in China. Scand J Work Environ Health 1995: 21(Suppl 2): 39–43.

    CAS  PubMed  Google Scholar 

  • du Toit R.S.J. The Shift Mean Respirable Mass Concentration of Eleven Occupations of Witwatersrand Gold Miners 4/91. NCOH, Johannesburg, 1991.

    Google Scholar 

  • Environmental Protection Agency (EPA). Guidelines for carcinogenic risk assessment. Fed Regist 1986: 51: 33992–34117.

    Google Scholar 

  • Environmental Protection Agency (EPA). EPA proposed guidelines for carcinogen risk assessment. Fed Regist 1996: 61: 17960–18011.

    Google Scholar 

  • Fubini B., Fenoglio I., Ceschino R., Ghiazza M., Martra G., Tomatis M., et al. Relationship between the state of the surface of four commercial quartz flours and their biological activity in vitro and in vivo. Int J Hyg Environ Health 2004: 207: 89–104.

    Article  CAS  Google Scholar 

  • Gao P., Chent B.T., Hearl F.J., McCawley M.A., Schwerha D.J., Odencrantz J., et al. Estimating factors to convert Chinese “Total Dust” measurements to ACGIH respirable concentrations in metal mines and pottery industries. Ann Occup Hyg 2000: 44: 251–257.

    Article  CAS  Google Scholar 

  • Greenland S. Sensitivity analysis, Monte Carlo risk analysis, and Bayesian uncertainty assessment. Risk Anal 2001: 21: 579–583.

    Article  CAS  Google Scholar 

  • Greenland S. Multiple-bias modelling for analysis of observational data. J R Stat Soc Ser A Stat Soc 2005: 168: 267–291.

    Article  Google Scholar 

  • Greenwood N.N., and Earnshaw A. Chemistry of the Elements. Pergamon Press, Oxford, 1985.

    Google Scholar 

  • Heederik D., and Attfield M. Characterization of dust exposure for the study of chronic occupational lung disease: a comparison of different exposure assessment strategies. Am J Epidemiol 2000: 151: 982–990.

    Article  CAS  Google Scholar 

  • IARC Monographs on the evaluation of carcinogenic risk to human, vol. 68 Silica, Some Silicates, Coal Dust and Para-Aramid Fibrils. International Agency for Research on Cancer, Lyon, 1997.

  • IMA. Expert Workshop — Epidemiological Perspectives on Silica and Health, International mineral association, New York City, 2004.

  • ISO 7708. Air Quality — Particle Size Fraction Definitions for Health-Related Sampling. ISO Standard 7708. International Standards Organisation, Geneva, 1995.

  • ISO 15767. Workplace Atmospheres — Controlling and Characterizing Errors in Weighing Collected Aerosols (ISO/DIS 15767: 2000). Arbeitsausschuss Gefahrstoffe/Arbeitsschutz (AGSA) im DIN Deutsches Institut für Normung e.V.. Berlin, Beuth, 2001.

  • Jacobson M., and Tomb T.F. Relationship between gravimetric respirable dust concentration and midget impinger number concentration. Am Ind Hyg Assoc J 1967: 28: 554–556.

    Article  CAS  Google Scholar 

  • Kauppinen T., Toikkanen J., Pedersen D., Young R., Ahrens W., Boffetta P., et al. Occupational exposure to carcinogens in the European Union. Occup Environ Med 2000: 57: 10–18.

    Article  CAS  Google Scholar 

  • Kortner M., and Landwehr K. Bericht über Staubmessungen in den Werken der Kieselgur-Industrie im Raum der Lüneburger Heide (A 1802/62). Silikoseforschungsinstitut der Bergbau-Berufsgenossenschaft, Bochum 1962.

  • Koskela R.S., Klockars M., Laurent H., and Holopainen M. Silica dust exposure and lung-cancer. Scand J Work Environ Health 1994: 20: 407–416.

    Article  CAS  Google Scholar 

  • Kromhout H. Improved exposure assessment for prospective cohort studies and exposure control in the rubber manufacturing industry. Available from URL: http://exasrub.iras.uu.nl/ [accessed January 23, 2007 ].

  • Lash T.L., and Fink A.K. Semi-automated sensitivity analysis to assess systematic errors in observational data. Epidemiology 2003: 14: 451–458.

    PubMed  Google Scholar 

  • Lehmann F., Hambeck F., Linkert K.H., Lutze H., Meyer H., Reiber H., et al. Belastung durch ionisierende Strahlung im Uranerzbergbau der ehemaligen DDR: Abschlussbericht zu einem Forschungsvorhaben. HVBG, Sankt Augustin, 1998.

    Google Scholar 

  • Loomis D., and Kromhout H. Exposure variability: concepts and applications in occupational epidemiology. Am J Ind Med 2004: 45: 113–122.

    Article  CAS  Google Scholar 

  • Marsh G.M., Youk A.O., and Morfeld P. Mis-specified and non-robust mortality risk models for nasopharyngeal cancer in the national cancer institute formaldehyde worker cohort study. Regul Toxicol Pharmacol 2007: 47: 59–67.

    Article  CAS  Google Scholar 

  • Mine Safety and Health Administration (MSHA). Office of the Federal Register Code of Federal Regulation Title 30 “Mineral Resources” (30 CFR). Washington, 2001.

  • Morfeld P., Buchte S.F., McCunney R.J., Piekarski C., and International Carbon Black Association Lung cancer mortality and carbon black exposure: uncertainties of SMR analysis in a cohort study at a German carbon black production plant. J Occup Environ Med 2006: 48: 1253–1264.

    Article  CAS  Google Scholar 

  • National Institute for Occupational Safety and Health (NIOSH) Available from URL: http://www.cdc.gov./niosh/topics/silica/default.html [accessed January 23, 2007].

  • NIOSH. Recommendations for Occupational Safety and Health: Compendium of Policy Documents and Statements. National Institute for Occupational Safety and Health, Cincinnati (OH), 1992.

  • Orenstein A.J. Proceedings of the 1959 Pneumoconiosis Conference, Johannesburg. Churchill, London, 1960.

    Google Scholar 

  • Page-Shipp R.J., and Harris E. A study of the dust exposure of South African white gold miners. J South Afri Instit Mining Metal 1972: 73: 10–22.

    Google Scholar 

  • Pukkala E., Guo J., Kyyrönen P., Lindbohm M.L., Sallmén M., and Kauppinen T. National job-exposure matrix in analyses of census-based occupational cancer risk estimates: methodology and example results on crystalline silica in Finland. Scand J Work Environ Health 2005: 31: 97–107.

    Article  CAS  Google Scholar 

  • RAG. RAG Handbuch der Arbeitssicherheit Nr. 843 302 — Staubmessplan gemäß GesBergV &8. RAG, Essen, 1996.

  • Rice F.L., Park R., Stayner L., Smith R., Gilbert S., and Checkoway H. Crystalline silica exposure and lung cancer mortality in diatomaceous earth industry workers: a quantitative risk assessment. Occup Environ Med 2001: 58: 38–45.

    Article  CAS  Google Scholar 

  • Roach S.A., Baier E.J., Ayer H.E., and Harris R.L. Testing compliance with threshold limit values for respirable dusts. Am Ind Hyg Assoc J 1967: 28: 543–553.

    Article  CAS  Google Scholar 

  • Rothman K., and Greenland S. Modern Epidemiology. Lippincott Williams & Wilkins, Philadelphia, 1998.

    Google Scholar 

  • Sanderson W.T., Steenland K., and Deddens J.A. Historical respirable quartz exposures of industrial sand workers: 1946–1996. Am J Ind Med 2000: 38: 389–398.

    Article  CAS  Google Scholar 

  • Schins R.P.F., Duffin R., Hohr D., Knaapen A.M., Shi T.M., Weishaupt C., et al. Surface modification of quartz inhibits toxicity, particle uptake, and oxidative DNA damage in human lung epithelial cells. Chem Res Toxicol 2002: 15: 1166–1173.

    Article  CAS  Google Scholar 

  • Seiler F., Rehn B., Rehn S., and Bruch J. Different toxic, fibrogenic and mutagenic effects of four commercial quartz flours in the rat lung. Int J Hyg Environ Health 2004: 207: 115–124.

    Article  CAS  Google Scholar 

  • Seixas N.S., Heyer N.J., Welp E.A.E., and Checkoway H. Quantification of historical dust exposures in the diatomaceous earth industry. Ann Occup Hyg 1997: 41: 591–604.

    Article  CAS  Google Scholar 

  • Stacey P.R. The performance of different analytical approaches measuring respirable quartz in the workplace analysis scheme for proficiency (WASP) and the precision and limit of detection of the direct on-air-filter analysis methods. J ASTM Int 2005: 2, DOI:10.1520/JAI12213.

    Article  Google Scholar 

  • Steenland K., and Greenland S. Monte Carlo sensitivity analysis and Bayesian analysis of smoking as an unmeasured confounder in a study of silica and lung cancer. Am J Epidemiol 2004: 160: 384–392.

    Article  Google Scholar 

  • Steenland K., ‘t Mannetje A., Boffetta P., Stayner L., Attfield M., Chen J., et al. Pooled exposure–response analyses and risk assessment for lung cancer in 10 cohorts of silica-exposed workers: an IARC multicenter study. Cancer Causes Control 2001: 12: 773–784.

    Article  CAS  Google Scholar 

  • ‘t Mannetje A., Steenland K., Checkoway H., Koskela R.S., Koponen M., Attfield M., et al. Development of quantitative exposure data for a pooled exposure–response analysis of 10 silica cohorts. Am J Ind Med 2002: 42: 73–86.

    Article  Google Scholar 

  • Talvitie N.A. Determination of quartz in presence of silicates using phosphoric acid. Anal Chem 1951: 23: 623.

    Article  CAS  Google Scholar 

  • Tomb T.F. Measurement Strategies in US Unterground Coal Mines. National Institute for Occupational Safety and Health, Cincinnati (OH), 1990, pp 1124–1133.

    Google Scholar 

  • WHO. Man-Made Mineral Fibres. World Health Organization, Geneva, 1988.

  • Zhuang Z., Hearl F.J., Odencrantz J., Chen W., Chen B.T., Chen J.Q., et al. Estimating historical. Respirable crystalline silica exposures for Chinese pottery workers and iron/copper, tin, and tungsten miners. Ann Occup Hyg 2001: 45: 631–642.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Dahmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahmann, D., Taeger, D., Kappler, M. et al. Assessment of exposure in epidemiological studies: the example of silica dust. J Expo Sci Environ Epidemiol 18, 452–461 (2008). https://doi.org/10.1038/sj.jes.7500636

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jes.7500636

Keywords

This article is cited by

Search

Quick links