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A major concern in studies that address the health effects of air pollution is whether an observed association between concentrations of a pollutant and a

health outcome is all, or in part, due to the correlation between that exposure and either a second pollutant or a confounder. The addition of exposure

measurement error to such data complicates matters further. To account for measurement error when data come from a multi-city study, Schwartz and

Coull (2003) proposed a two-stage estimator. These authors showed via both first principles and simulation that their approach yields unbiased estimates

for the parameters of interest. However, these estimates have large variability. In this paper, we describe a fully Bayesian approach that yields estimators

that are much more efficient than the existing two-stage measurement error correction yet still unbiased. The proposed approach can also incorporate

additional exposures or confounders without requiring strict assumptions that are necessary in existing formulations of the model. We compare the

properties of the Bayesian estimators to existing approaches via simulation.
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Introduction

The potential health effects of ambient air pollution are a

major public health issue that has received a great deal of

attention over the past several decades. A major concern in

studies that address such questions is whether an observed

association between one pollutant and one outcome is due,

all or in part, to the correlation between that exposure and

either a second pollutant or a confounder. A high correlation

between two covariates may yield relatively imprecise

estimates of the exposures of interest. For example, in air

pollution studies, the correlation between concentrations of

airborne particles and carbon monoxide can exceed 0.8.

The presence of measurement error in such data compli-

cates matters further. It is well known (Carroll et al., 1995)

that in a model with only a single covariate, the usual

estimator for the regression coefficient will be biased toward

the null. In a model with two covariates, both measured with

error, in general, the standard ordinary least-squares (OLS)

estimates of the regression coefficients tend to be attenuated,

and the one corresponding to the variable measured with

considerable error will be attenuated more than the

coefficient estimate corresponding to the variable measured

with less error. However, depending on the magnitude and

direction of the correlations between the two exposures and

between the measurement errors, the effect of one variable

might be transferred to the estimate of the other variable

(Zeger et al., 2000). Generally, this transfer occurs from a

poorly measured variable to one with less error. That is, there

could be upward bias in the estimated effect of the better-

measured pollutant, but downward bias in the estimated

effect of the more poorly measured pollutant. This issue is

particularly important in a regulatory context, where interest

focuses on identifying safe levels of pollutants with dangerous

health effects. In a multi-city setting, if bias is expected in the

individual substudies, this bias propagates through to the

pooled estimates of association.

To account for measurement error in linear regression,

several approaches have been proposed. These include

regression calibration, simulation–extrapolation and the use

of instrumental variables (Carroll et al., 1995). For data that

arise from a multi-city design, Schwartz and Coull (2003)

proposed a two-stage approach that yields unbiased estimates

for the health effects of interest. A disadvantage of this two-

stage approach, however, is that the method yields imprecise

estimators. This imprecision results in a reduction of power,

which for some realistic scenarios can be severe. This power

reduction could be crucial in particulate matter epidemiology,Received 7 September 2007; accepted 12 September 2007
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where the risks associated with exposure are relatively small.

Thus, interest focuses on the development of more efficient

health effect estimators that control for measurement error in

pollution concentrations.

This paper describes such an extension and explores its

performance via simulation. The structure of this paper is as

follows. The next section reviews the approach proposed by

Schwartz and Coull (2003) and proposes a one-stage

Bayesian approach that yields more precise health effect

estimates. The penultimate section describes the setting and

the results of our simulation study and is followed by a

concluding discussion in the last section. In the appendix, we

provide the WinBUGS code we used for fitting our models.

Methods

Review of the Schwartz and Coull Approach
In the simplest case, Schwartz and Coull (2003) considered a

linear model in which the only covariates are two correlated

exposures that are measured with error. For day t, t¼ 1,y,

Ti, in city i, i¼ 1,y, N, consider the true model

Yit ¼ b0 þ b1X1it þ b2X2it þ eit; ð1Þ
where

Xit ¼ ðX1it;X2itÞT

� N mx;i;
s2x1 sx1sx2rx;i

sx1sx2rx;i s2x2

� �� �
; ð2Þ

eit � Nð0; s2i Þ and eit is independent of Xit. If Xit is measured

without error, then fitting the model

X2it ¼ g0i þ g1iX1it þ Zit; ð3Þ
yields parameter estimate bg1i with expectation

Eðbg1iÞ ¼
sx2rx;i

sx1
¼ g1i:

Now, suppose Xhit is measured with error. Denote

Whit ¼ Xhit þ Uhit , h¼ 1,2, with

Uit ¼ ðU1it;U2itÞT � N 0;
s2u1 su1su2ru;i

su1su2ru;i s2u2

� �� �
:

Consider first the setting in which the measurement error for

the two exposures is independent; that is, ru,I¼ 0 for all i.

Suppose we fit the model

W2it ¼ g�0i þ g�1iW1it þ Z�it;

separately for each city. Then, from the distributional

assumptions on Xit and Uit, we have

Eðbg�1iÞ ¼
sx1sx2rx;i

s2x1 þ s2u1
¼ s2x1

s2x1 þ s2u1
g1i ¼ ag1i;

where a is typically termed the attenuation coefficient. Now

consider a second model

Yit ¼ d�0i þ d�1iW1it þ z�it:

Due to the measurement error and the exclusion of W2, we

have

Eðbd�1iÞ ¼
s2x1

s2x1 þ s2u1
ðb1 þ b2g1iÞ ¼ aðb1 þ b2g1iÞ:

Now suppose the true g�1i ¼ ag1i is known. Then we have a

random variable bd�1i with mean ab1 þ b2 ag1ið Þ ¼ c0þ
b2 ag1ið Þ, a linear function of variable ag1i.

Thus, we can estimate c0 and b2 using OLS, yielding an

attenuated estimate of b1 but an unbiased estimate of b2 in

the presence of independent measurement error U. If we are

interested in an estimator for b1, we reverse the roles of X2it

and X1it.

The above formulation requires that we know the true g�1i.

In practice, we estimate these parameters for each city. To get

good estimates, we need a large sample size within each city.

That is often the case in air pollution studies, and hence the

estimated bb2 will be relatively precise. In contrast, in the

presence of measurement error, the standard approach based

on fitting the two-pollutant model

Yit ¼ b�0 þ b�1W1it þ b�2W2it þ eit ð4Þ
will yield biased estimates of bb1 and bb2 , even for large sample

sizes. In addition, even though Schwartz and Coull (2003)

used a multivariate normal formulation to make the

estimation strategy clear, normality is not required as long

as the linear models (1) and (3) hold.

Schwartz and Coull (2003) also considered the perfor-

mance of the two-stage estimator in the presence of

correlated measurement error. If the measurement error

correlation remains constant across cities, then the two-stage

estimator will be unbiased. Furthermore, the authors also

considered the case of a heterogeneous effects model, where

Yit ¼ b0i þ b1iX1it þ b2iX2it þ eit; ð5Þ
and

bi ¼ ðb0i; b1i; b2iÞT

� N b;
sb0 sb0sb1rb;01 sb0sb2rb;02

sb0sb1rb;01 s2b1 sb1sb2rb;12

sb0sb2rb;02 sb1sb2rb;12 s2b2

2
4

3
5

0
@

1
A;

with b ¼ ðb0; b1; b2ÞT . They showed that their approach is

consistent under such a scenario.

Bayesian Approach
As in Schwartz and Coull (2003), we also start from the

model defined by (1) and (2). The parameters of interest are

the coefficients that represent associations between the

outcome and the two exposure concentrations, e.g. b1 and

b2. Now suppose that Xhit, h¼ 1,2, is measured with additive

measurement error, and that the measurement errors are

uncorrelated.

As noted in the Introduction, interest focuses on improv-

ing the efficiency of the estimators proposed in Schwartz and
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Coull (2003), while maintaining unbiasedness. To do this, we

fit the full model and jointly estimate all the unknown

parameters simultaneously. This will increase efficiency and

thus the power to detect effects. The Bayesian methodology

is a natural way to fit complex, hierarchical models with

many parameters.

Assume the model defined by (1) and (2) holds, and

instead of Xhit we observe Whit¼XhitþUhit, h¼ 1,2, where

the measurement errors U1 and U2 are uncorrelated. It is

easy to show using a method of moments (MOM) approach

that all of the parameters in the model are estimable. The

available data for each city i, i¼ 1,2,y, N, consists of the

outcome Yi and the two error-prone exposures

Wi¼W1i,W2i. Hence, for identifiability it is sufficient to

show that all the parameters of our full Bayesian model can be

expressed as a function of the moments of observed quantities.

Let YT ¼ðYT
1 ;Y

T
2 ; :::;Y

T
NÞ; WT

1 ¼ðWT
11;W

T
12; :::;W

T
1NÞ and

WT
2 ¼ ðWT

21;W
T
22; :::;W

T
2NÞ: If we integrate out the un-

observed X, then it is easy to show that for each city i, we have

EðW1iÞ ¼ m1;i EðW2iÞ ¼ m2;i CovðW1i;W2iÞ ¼ sx1sx2rx;i

CovðYi;W1iÞ ¼ b1s
2
x1 þ b2sx1sx2rx;i CovðYi;W2iÞ ¼ b2s

2
x2

þb1sx1sx2rx;i VarðYiÞ ¼ s2i þ b21s
2
x1 þ b22s

2
x2 þ 2b1b2sx1sx2rx;i

These equalities, along with the fact that

EðYiÞ ¼ b0 þ b1m1;i þ b2m2;i and VarðW1Þ ¼ s2x1 þ s2u1 and

VarðW2Þ ¼ s2x2 þ s2u2 , enable one to express all unknown

model parameters as functions of the moments of observed

variables as long as b1 and b2 are not equal to zero. This

indicates that, in such cases, the model parameters are

identifiable.

To fit our Bayesian approach we choose conjugate,

non-informative but proper prior distributions for the para-

meters of the model. Specifically, we use: Pðb0Þ
¼ PðbhÞ ¼ Pðm1;iÞ ¼ Pðm2;iÞ ¼ Normalð0; 103Þ; Pðrx;iÞ ¼
Uniform ð�1; 1Þ, Pðs2i Þ ¼ Pðs2xh

Þ ¼ Pðs2uh
Þ ¼ Inverse�

Gammað0:01; 0:01Þ for i¼ 1,2,y, N and h¼ 1,2. If one

has available prior information for any of the model

parameters (i.e. from previous studies), this can be easily

incorporated in the Bayesian scheme by using appropriate

informative prior distributions for those parameters.

The assumption of independent measurement error is a

strong assumption, which ensures identifiability. It may be

approximately true in some applications. In the specific case

of air pollution epidemiology, there is now limited data on

the magnitude of these correlations. We examined data from

Sarnat et al. (2001), who measured personal exposure to

multiple pollutants simultaneously in 56 subjects in Balti-

more, Maryland. Defining the difference between personal

and ambient pollution measurements as the exposure error,

we found the correlation between measurement error in

PM2.5 and other pollutants to be quite low, with a maximum

correlation of 0.18 between the errors in PM2.5 and NO2. To

investigate how these measurement errors vary across studies,

we compared these correlations to the ones observed in

recently collected data from Boston, Massachusetts. These

correlations were similarly low, with the maximum correla-

tion of 0.17 again corresponding to the pair of measurement

errors associated with PM2.5 and NO2. Thus, in the air

pollution context, early data from two cities suggest that the

homogeneous measurement error correlation assumption

may be reasonable, although more studies are necessary to

confirm this observation.

In addition to the predictors of interest, most models

must control for confounding. In the model considered so

far, error-contaminated exposures W are the only covariates

in the model. Hence, it is necessary to extend our model

to accommodate variables measured without error. It is

well known that measurement error in one variable results

in biased coefficient estimators for all variables that are

included in the model, even for those that are measured

without error (Judge et al., 1985, p. 708). Our proposed

approach can easily accommodate more variables in the

model, without any extra assumptions. Using the MOM

approach outlined above, one can easily show that all the

parameters of the model are identifiable in this expanded

model as well.

In the two-stage approach proposed by Schwartz and Coull

(2003), if one is interested in adjusting for covariates measured

without error, one must make the additional assumption that

the correlations between the confounder and each of the

exposures are constant across cities. Otherwise, if these

correlations vary significantly across cities, this approach yields

biased estimates, and this bias can be severe. The Bayesian

joint modeling approach makes no such assumption. Thus, this

approach will outperform the two-stage approach when this

assumption is violated. To examine the performance of the

methods under such a scenario, we include in our simulation

study a setting where the correlations between a confounder

and the two error-prone exposures vary significantly across

cities. We report on the results in the next section.

Similarly, the fully Bayesian approach accommodates

models that contain more than two error-prone exposures.

In this setting, no extra assumptions on how the correlations

among exposures vary across cities are required. Again this is

not true for the two-stage approach, which requires that the

pairwise correlations between each of the two pollutants

involved in the two-stage process and a third pollutant are

constant across cities. Furthermore, Schwartz and Coull

(2003) noted that a simple two-stage strategy that considers

only two exposures at a time yields health effect estimates

that are not unique. For example, if the pollutants of interest

are W1, W2, and W3, then one can obtain an unbiased

(assuming constant correlations among the pollutants across

cities) slope estimate of b2 by using either W1 or W3 as the

covariate in the first stage of this approach. The Bayesian

approach uses all the available data simultaneously and the

resulting estimates are unique.

Zeka and Schwartz (2004) applied the Schwartz and Coull

approach to data from the National Morbidity and

Hierarchical measurement error modelsGryparis et al.
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Mortality Air Pollution Study. These data come from 90 cities

and consist of five pollutants. Zeka and Schwartz (2004)

attempted to recover the independent effect of each pollutant,

controlling for the other four pollutants. In this application, the

five pollutants were paired with each other, and hence for each

pollutant, the authors obtained four different (and, in principle,

unbiased) estimates relating that pollutant to daily mortality.

An issue that arises is how best to combine the four health

effect estimates for each pollutant, which could improve the

precision of the overall estimate of each health effect. Although

there are statistical methods of doing so (e.g. using weighted

averages), the Bayesian approach is more attractive for this

purpose since it uses all of the data to produce a unique health

effect estimate for each pollutant.

Our proposed model can easily be applied to cases in

which the outcome is not continuous. In the case where the

response is categorical (e.g. a binary or count variable), or

heavily skewed, generalized linear models are appropriate.

For instance, a Poisson regression with a log link is a

common model for analyzing mortality counts. We assume

that YitBPoisson (lit), where

lit ¼ expðb0 þ b1X1it þ b2X2itÞ:
To fit the linear models considered in this section, we used the

software package WinBUGS 1.4. This software implements

Monte Carlo Markov chain (MCMC) methods for simulat-

ing the posterior distributions of all model parameters, given

the data and the prior distributions for the parameters. The

approach, based on Gibbs sampling, successively samples

from the full conditional distribution of each parameter,

given values of all other parameters in the model. Although

the model we considered is a complex, hierarchical model,

when the response is continuous it consists only of series of

linear regressions, and WinBUGS is an efficient tool in such

cases. We also used WinBUGS to implement the hierarchical

generalized linear model (e.g. Poisson regression). Model

fitting takes longer in this case since our formulation is no

longer a series linear models. For both the linear and Poisson

regression models, we conducted a simulation study to

examine the properties of our proposed Bayesian approach,

as implemented in WinBUGS. More details can be found in

the next section.

To avoid poor mixing for the correlation coefficients rx;i ,

which is a consequence of the constrained parameter space

(e.g. [�1, 1]) for these parameters, we used the variance

stabilizing transformation of Fisher, whereby we assume

zi ¼ 0:5ð1þ rx;iÞ=ð1� rx;iÞ follows a normal distribution.

This transformation removes the restriction on the model

parameter space, making the MCMC sampling more efficient.

Results

To compare the performances of the various approaches to

fitting models (1) and (2), we performed a simulation study.

We considered the standard OLS estimator that does not

correct for measurement error, the two-stage approach of

Schwartz and Coull, and the Bayesian approach to model

fitting. Our first simulation setting corresponds to a linear

regression model. For each city i,i¼ 1,2,y, 6, we generated

the true covariates Xi ¼ ðX1i;X2iÞ from a multivariate

normal distribution, with s2x1
¼ s2x2

¼ 1 and the correlation

r1:2;i between the two exposure variables X1i and X2i varying

uniformly among specified intervals. We assumed indepen-

dent U1i and U2i and tried different sets of values for s2u1 and

s2u2 : The outcome was randomly generated from a Normal

distribution with mean b1X1i þ b2X2i , and variance equal to

one. Because of the complex, hierarchical setting, our

simulations run slowly in WinBUGS. As a result, we present

the results from only S¼ 20 simulated data sets for each

setting.

Table 1 presents the different scenarios we fit in the linear

regression setting. Scenarios (a) and (b) correspond to linear

regression models containing two error-prone exposures

only. Scenario (c) adds a confounder measured without

error. Here, r1,i and r2,i represent the correlation between the

confounder and X1 or X2, respectively, in city i. We note that

we do not keep these correlations constant for all cities.

To get good starting values for our sampler, we used the

MOM described in the section on ‘‘Methods’’. For each data

set, we used 20,000 iterations for burn in, and we ran the

chain for an additional 80,000 iterations. We used vague,

non-informative priors for the hyperparameters, as defined in

the previous section. For all models, we examined conver-

gence of the Markov chain using both graphical and formal

approaches (Cowles and Carlin, 2004).

To compare these methods, we calculated estimates of bj,

j¼ 1,2. For each method, we estimated the biasd
E bbj � bj

� �
� S�1 PS

h¼1
ðbbjÞh � bj

h i
, the mean square error

(MSE)
d

E ðbbjÞh � bj

h i2� �
� S�1 PS

h¼1
ðbbjÞh � bj

h i2� �
, the

percentiles of the simulated distributions of each estimator,

and the Monte Carlo standard deviation of each estimator.

Table 2 presents selected results from our simulations in the

linear regression setting, and Figures 1 and 2 present the

simulated distributions of each estimator graphically. Results

show that the Bayesian approach outperforms the two-stage

approach. The simulated standard deviations of the Bayesian

Table 1. Different scenarios for linear regression simulation.

Scenario su1 su2 b1 b2 rx,i r1,i r2,i

(a) 0.3 0.6 1 1 8-fold F F
(b) 0.5 1.0 1 1 8-fold F F
(c) 0.3 0.6 1 1 8-fold 8-fold 8-fold

Hierarchical measurement error models Gryparis et al.
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posterior mean estimator are much smaller than the two-

stage counterparts. This results in a big reduction in MSE, in

some cases by more than 80%. Thus, joint estimation of the

parameters increases the efficiency of the parameter esti-

mates. Agreeing with results in Zeger et al. (2000) and

Schwartz and Coull (2003), estimates from the uncorrected

approach are biased, with the coefficient estimator for the

more poorly measured variable (e.g. X2) incurring more bias.

In the section on ‘‘Methods,’’ we noted that unlike the two-

stage approach, the joint approach does not require the

correlations among exposures and confounders to be constant

among cities. The results for Scenario (c) illustrate this point.

In this scenario, the Schwartz and Coull (2003) estimator of b2

incurs more bias than the standard estimator, and the interval

defined by the range of the 2.5th and 97.5th percentiles of its

distribution does not include the true value. This is due to the

fact that the correlations between the confounder and the two

exposures vary across cities. As shown in Table 2, the MSE of

the Bayesian estimator is more than 30 times smaller than that

for the two-stage estimator in this case.

To evaluate the efficiency gains obtained by the Bayesian

approach in the Poisson setting, we performed another

simulation study. For each city i,i¼ 1,2,y, N, we generated

the true covariates Xi¼ (X1i,X2i) from a multivariate normal

distribution, with s2x1
¼ s2x2

¼ 1 and correlation r1:2,i among

the two exposure variables X1i and X2i varying uniformingly

among specified intervals. We considered different values for

bj, s2u1 , s2u2 , and ru;i. For the outcome, we simulated a

random Poisson count using the two exposures.

Table 3 presents the different scenarios considered. We

used a baseline Poisson mean of either 22 or 5. For each

variable, we considered a log relative risk of either 0 or 0.05

per standard deviation in exposure. We used N¼ 6 cities in all

scenarios, except Scenario (h), which is based on N¼ 20

cities. Scenario (f) is the heterogeneous model described in

(5). Scenario (i) allows for correlated measurement errors,

with this measurement error correlation varying 2-fold across

cities. Again, due to the computational burden of the

Bayesian approach, for each setting we present the results

from only S¼ 20 simulated data sets.

Table 4 presents the results from the Poisson simulations,

and Figures 3 and 4 summarize the results graphically. Once

again, we see big reductions in the variability of the health

effect estimates, and the corresponding decreases in MSE,

from the Bayesian approach. The uncorrected estimators are

Table 2. Bias, Monte Carlo standard deviation and MSE for the parameters b1 and b2 in a linear regression model.

Scenario Parameter Bias (S.C.) Bias (B) SD (S.C.) SD (B) MSE (S.C.) MSE (B)

(a) b1 0.027 0.009 0.055 0.038 0.004 0.001

(a) b2 0.040 0.006 0.075 0.043 0.007 0.002

(b) b1 0.031 0.023 0.076 0.059 0.006 0.004

(b) b2 0.034 0.017 0.102 0.064 0.011 0.004

(c) b1 �0.295 �0.003 0.132 0.054 0.104 0.004

(c) b2 �0.043 0.011 0.105 0.053 0.013 0.003

The results are for the approach in Schwartz and Coull (2003) (S.C.) and for the Bayesian approach (B)

0.4

0.6

0.8

1.0

1.2

β1

E
st
im

at
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(a) (b) (c)

Figure 1. 2.5th, 50th, and 97.5th percentiles of simulated estimates for
b1 in linear regression simulation Scenarios (a–c). For each scenario,
the first, second, and third intervals represent the standard, Schwartz
and Coull (2003), and Bayesian estimates for b1.
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Figure 2. 2.5th, 50th, and 97.5th percentiles of simulated estimates for
b2 in linear regression simulation Scenarios (a–c). For each scenario,
the first, second, and third intervals represent the standard, Schwartz
and Coull (2003), and Bayesian estimates forb2.
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biased, and the estimators corresponding to the variable with

more measurement error (e.g. X2) incur more bias. Of

particular interest from a regulatory standpoint are the results

from Scenario (g). Under this scenario, only X1 is causally

related with the outcome. Because of the correlation between

the two exposures, it is possible that some of the effect of X1

may be transferred to X2. Our results show that the Bayesian

approach performs very well, reducing the estimated MSE as

expected. Under this scenario, some of the parameters in the

joint model are not identifiable, since b2¼ 0. Specifically, in

this case, there is no information in the likelihood to

separately identify both s2x2
and s2u2 : However, their sum is

identifiable. This is shown in Figure 5. Although the

estimates for s2x2
and s2u2 are unstable in the Markov chain,

the chain based on their sum performs well. The sample

correlation between s2x2
and s2u2 in this case was �0.97. Besag

et al. (1995) and Waller et al. (1997) noted that samplers

operating on overparametrized spaces (i.e. having a subset of

parameters identified by neither the likelihood nor the prior)

are perfectly legitimate, provided that their samples are used

only to summarize the posterior distribution of identifiable

functions of the parameters. There is no notion of

‘‘convergence’’ for unidentified parameters, and their pre-

sence in the sampling order will have no negative effect on the

convergence of the functions of interest. Hence, posterior

Table 3. Different scenarios for Poisson regression, with (f) being the

heterogeneous model.

Scenario Baseline count Cities su1 su2 b1 b2 rx,i ru,i

(d) 22 6 0.3 0.6 0.05 0.05 6-fold 0

(e) 5 6 0.3 0.6 0.05 0.05 6-fold 0

(f) 22 6 0.3 0.6 0.05 0.05 6-fold 0

(g) 22 6 0.3 0.6 0.05 0 6-fold 0

(h) 22 20 0.3 0.6 0.05 0.05 6-fold 0

(i) 22 6 0.3 0.6 0.05 0.05 6-fold 2-fold

Table 4. Bias, Monte Carlo standard deviation and MSE for the parameters b1 and b2 in a Poisson regression model.

Scenario Parameter Bias (S.C.) Bias (B) SD (S.C.) SD (B) MSE (S.C.) MSE (B)

(d) b1 0.007 0.001 0.031 0.006 9.8e�04 3.3e�05

(d) b2 �0.002 �0.002 0.021 0.006 4.2e�03 3.3e�05

(e) b1 0.017 0.004 0.036 0.011 1.3e�04 1.3e�04

(e) b2 0.004 �0.003 0.027 0.009 0.001 8.3e�05

(f) b1 �0.007 0.007 0.020 0.011 3.5e�04 1.4e�04

(f) b2 �0.003 0.004 0.019 0.012 3.2e�04 2.8e�04

(g) b1 0.052 0.000 0.017 0.004 0.003 1.5e�05

(g) b2 �0.047 0.001 0.015 0.005 0.002 2.8e�05

(h) b1 �0.005 0.000 0.010 0.003 1.2e�04 6.7e�06

(h) b2 �0.004 0.000 0.008 0.002 7.2e�05 4.8e�06

(i) b1 0.001 �0.001 0.014 0.006 2.0e�04 3.4e�05

(i) b2 �0.003 �0.003 0.014 0.007 2.0e�04 5.0e�05

The results are for the approach in Schwartz and Coull (2003) (S.C.) and for the Bayesian approach (B).
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Figure 3. 2.5th, 50th, and 97.5th percentiles of simulated estimates for
b1 in Poisson regression simulation Scenarios (a–c). For each scenario,
the first, second, and third intervals represent the standard, Schwartz
and Coull (2003), and Bayesian estimates for b1.
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Figure 4. 2.5th, 50th, and 97.5th percentiles of simulated estimates for
b2 in Poisson regression simulation Scenarios (a–c). For each scenario,
the first, second, and third intervals represent the standard, Schwartz
and Coull (2003), and Bayesian estimates forb2.
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summaries from an MCMC are valid for identifiable

parameters that are of interest (in our case, b1 and b2).

Discussion

In this paper, we extended the work of Schwartz and Coull

(2003) by improving the efficiency of the measurement error

estimators, while maintaining unbiasedness. We showed that,

in this framework, all the parameters are identifiable as long

as all variables have independent effects on the outcome, and

that a joint estimation approach will yield estimates that are

more precise than those from two-stage approach. Fitzmaur-

ice et al. (2004) noted that this is generally true in hierarchical

models. We found that the Bayesian machinery is very

helpful in such complex, hierarchical settings and we used

WinBUGS for model fitting. This approach yields samples

from the posterior distribution of the parameters of interest.

Moreover, the joint modeling approach easily incorporates

covariates measured without error. It is well known that if a

variable is subject to measurement error, this error will not

only affect the coefficient estimate for that variable, but will

also affect the estimates of the other coefficients in the model,

even those corresponding to variables measured without

error. In this case, the direction of the bias is not easy in

general to determine, since it depends on the association

structure of the multiple covariates. The joint modeling

approach uses information in the covariates measured

without error to gain more information about the measure-

ment error variance, ultimately yielding more precise

estimators. Another advantage of the fully Bayesian

approach is that it can incorporate smoothing in a

semiparametric regression setting while controlling for

measurement error (Berry et al., 2002; Carroll et al., 2004).

Such smoothing techniques have been used extensively in

environmental epidemiology, since these methods can adjust

for nonlinear effects of temporal, meteorological, and spatial

patterns.

Recent studies on the health effects of air pollution have

examined the independent effect of as many as five

pollutants. Zeka and Schwartz (2004) considered multiple

two-pollutant models in such a setting. These authors then
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Figure 5. Plots of s2x2
and s2u2 and their sum from a fit of Poisson regression Scenario (g).
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pooled the resulting coefficients for a given pollutant from

different models. In the case that one is interested in adjusting

for two error-prone exposures and a confounder measured

without error, the two-stage approach requires that one

assumes the correlations between a confounder and each of

the pollutants does not vary by city. These assumptions may

not always be realistic, and our Bayesian approach extends

naturally to settings involving more than two variables

measured with or without error, without requiring extra

assumptions. For instance, if one suspects additional

potential confounders could be measured with error, this

could be built into the model in a natural way by including

these covariates in Xit as defined in (1) and (2). This is a very

attractive feature of our proposed method, which can be

useful in hierarchical studies focusing on multiple correlated

pollutants or considering multiple confounders measured

either with or without error.

Like all Bayesian approaches, our proposed method is

computationally intensive. Part of this is due to the fact that

the mixing of the Markov chains used to fit the model can be

slow. We have found in previous work (Gryparis et al., 2006)

that if one is not interested in estimating the true latent

exposure itself (just the health effect associated with that

exposure), mixing can be improved by integrating these latent

variables out of the model. This practice increases the

complexity of the model, since some parameters appear both

in the mean and the variance structure of some posterior

distributions. Further, the MCMC updates are more

complicated, since updating of the model parameters must

be done using Metropolis–Hastings, rather than simpler

Gibbs sampling, steps. Thus, this practice complicates each

updating step, but reduces the number of iterations required

for convergence due to the better mixing properties of the

chain. This computational complexity is manageable for a

given data analysis, as long as the data set contains a small-

to-moderate number of cities, say less than 20 or so. The

computations presented difficulties in this paper mainly

because we investigated its performance via a simulation

study, where we applied the method repeatedly. One could

extend the applicability of this approach to larger data sets by

programming the Markov chain Monte Carlo fitting

procedure in a programming language that is faster than

WinBUGS, such as the R software package. We have found this

to be helpful in other Bayesian settings (Gryparis et al., 2006).

We have shown that the proposed estimators are robust to

covariate measurement error, assuming the model is correctly

specified otherwise. That is, we assume that the important

covariates are included in the model. Of course, the methods

do not protect against the possibility that residual confound-

ing still exists due to omission of an important covariate. We

note however, that this is true of any regression model, and is

not a disadvantage of the proposed procedure.

In our simulation study, we used vague, non-informative

but conjugate prior distributions in our Bayesian formulation.

Another advantage of the Bayesian approach is that one can

incorporate prior knowledge, by choosing appropriately the

prior distributions of the hyperparameters. In practice, for

the analysis of a given data set, incorporation of prior

knowledge in the estimation procedure can add a great deal

of information to the analysis.

Conceptually, one could also construct a frequentist

approach to fitting the joint model defined by (1) and (2).

Good starting values for all parameters would be necessary,

and the simple MOM estimates may be useful for this

purpose. We expect the joint likelihood approach to perform

similarly to our proposed Bayesian approach that uses non-

informative priors. One complication in the frequentist

setting is that all model parameters must be identifiable, or

an algorithm for obtaining the maximum likelihood estimates

will not converge. A second difference between the Bayesian

and frequentist approaches is that the Bayesian approach

results in exact standard errors while a classical approach

relies on large sample asymptotics.
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Appendix

Here, we provide the WinBUGS code that one can use to fit

a linear health effects model using two correlated exposures.

The following code can be easily modified to accommodate

different scenarios (e.g. adding more covariates with or

without measurement error, categorical outcomes, etc.).

model

{

for (o in 1:n.all)

{

mean[o] o- beta0 þ beta1*x[o,1] þ beta2*x[o,2]

w[o,1] B dnorm(x[o,1], tau.u1)

w[o,2] B dnorm(x[o,2], tau.u2)

y[o] B dnorm(mean[o],tau.y[city[o]])

w[o,1:2] B dmnorm(mu.x[city[o],],

tau.all[(2*city[o] 1):(2*city[o]),])

}

for (i in 1:n.city)

{

mu.x[i,1] B dnorm(0, 0.001)

mu.x[i,2] B dnorm(0, 0.001)

oriz[i] o- sigma2.x1*sigma2.x2*(1-pow(rho[i],2))

tau.all[(2*i-1),1] o- sigma2.x2/oriz[i]

tau.all[(2*i),2] o- sigma2.x1/oriz[i]

diag.el[i] o- -pow(sigma2.x1,.5)*pow(sigma2.x2,.5)*

rho[i]/oriz[i]

tau.all[(2*i-1),2] o- diag.el[i]

tau.all[(2*i),1] o- diag.el[i]

rho[i] B dunif(-.99,.99)

tau.y[i] B dgamma(0.01,0.01)

}

beta0 B dnorm(0,0.001)

beta1 B dnorm(0,0.001)

beta2 B dnorm(0,0.001)

tau.u1 B dgamma(0.01,0.01)

tau.u2 B dgamma(0.01,0.01)

tau.x1 B dgamma(0.01,0.01)

tau.x2 B dgamma(0.01,0.01)

sigma2.x1 o- 1/tau.x1

sigma2.x2 o- 1/tau.x2

}
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