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During the past three decades, receptor models have been used to identify and apportion ambient concentrations to sources. A number of groups are

employing these methods to provide input into air quality management planning. A workshop has explored the use of resolved source contributions in

health effects models. Multiple groups have analyzed particulate composition data sets from Washington, DC and Phoenix, AZ. Similar source profiles

were extracted from these data sets by the investigators using different factor analysis methods. There was good agreement among the major resolved

source types. Crustal (soil), sulfate, oil, and salt were the sources that were most unambiguously identified (generally highest correlation across the sites).

Traffic and vegetative burning showed considerable variability among the results with variability in the ability of the methods to partition the motor

vehicle contributions between gasoline and diesel vehicles. However, if the total motor vehicle contributions are estimated, good correspondence was

obtained among the results. The source impacts were especially similar across various analyses for the larger mass contributors (e.g., in Washington,

secondary sulfate SE¼ 7% and 11% for traffic; in Phoenix, secondary sulfate SE¼ 17% and 7% for traffic). Especially important for time-series health

effects assessment, the source-specific impacts were found to be highly correlated across analysis methods/researchers for the major components (e.g.,

mean analysis to analysis correlation, r40.9 for traffic and secondary sulfates in Phoenix and for traffic and secondary nitrates in Washington. The sulfate

mean r value is 40.75 in Washington.). Overall, although these intercomparisons suggest areas where further research is needed (e.g., better division of

traffic emissions between diesel and gasoline vehicles), they provide support the contention that PM2.5 mass source apportionment results are consistent

across users and methods, and that today’s source apportionment methods are robust enough for application to PM2.5 health effects assessments.
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Introduction

Current National Ambient Air Quality Standards (NAAQS)

for airborne particulate matter (PM) use airborne particle

mass as the indicator for making air quality determinations.

However, it seems highly likely that some types of particles

are more toxic than others. Thus, the focus on all parti-

cles that contribute mass may lead to less efficient and less

effective control strategies, relative to being able to focus

directly on those particles that cause the adverse human

health effects. Although current regulations only target total

mass concentrations, future regulations could be focused

onto the specific components that are related to inducing the

adverse health effects. Even under current regulations, the

implementation planning process in areas in nonattainment
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of the National Ambient Air Quality Standards could focus

on the most toxic components of the ambient aerosol if they

can be identified.

However, there are an enormous number of possible

chemical species associated with the particles, and a

potentially more effective approach would be to consider

the airborne PM as a mixture of mass contributions by

various source classes. These source types (e.g., spark-

ignition vehicles, diesel powered vehicles, coal-, gas-, or oil-

fired power plants, incinerators, etc.) have characteristic

chemical and/or physical patterns (mixtures), and it may be

useful to examine the relationship of specific source emissions

on health effects since, if a limited number of sources

contributed significantly to the effects, more targeted control

strategies could then be devised to focus on those sources

producing most of the health problems.

These source composition or physical properties profiles

permit the contributions of these sources to the airborne PM

mass to be apportioned. This area of research is called

Receptor Modeling and has been an area of active research

for over 30 years. There are a number of methods that have

been used with the choice of technique being dependent on

the amount of information that is available a priori. In

general, these methods have been primarily employed as part

of the development of air quality management plans.

However, there have been very few published efforts to re-

late apportioned sources to human health effects (Ozkaynak

and Thurston, 1987; Laden et al., 2000; Mar et al., 2000). As

described in a companion paper by Thurston et al. (2005), a

workshop was organized, under the auspices of the US PM

Research Centers, at which a number of investigators

presented their results on the analyses of two historical data

sets: one from Washington, DC and the other from Phoenix,

AZ. The apportioned PM2.5 PM mass contributions were

then included in health effects models. The results of the

health effects analyses are presented in companion papers

(Mar et al., 2005; Ito et al., 2005). This paper will describe

the ambient PM2.5 compositional data sets and the various

methods used to identify the sources and perform the mass

apportionment in each workshop city, for subsequent input

to the health effects comparisons. It is the goal of this paper

to evaluate the application of source apportionment methods

and their application by multiple investigators and their

associated uncertainties.

Data sets

Fine PM mass and speciation data sets from Washington,

DC and Phoenix, AZ were selected for evaluation in the

workshop because they were as consistent as possible with

the newly instituted EPA Speciation Network, allowing these

results to be indicative of what might be achieved when

analyzing those data. These data sets are described in detail

elsewhere in the literature (Ramadan et al., 2000, 2003; Kim

and Hopke, 2004a), and briefly summarized below.

Washington DC
The PM2.5 samples in this study were collected on Wednes-

days and Saturdays at the IMPROVE monitoring site

located in Washington, DC. This monitoring site is located

near the Potomac River, 2 km southeast of Lincoln

Memorial, 3 km northeast of Ronald Reagan Washington

National Airport, and 30m above sea level. Highways are

closely situated to the north and west of the site. Integrated

24-h PM2.5 samples were collected on Teflon, Nylon, and

quartz filters. The Teflon filter was used for mass concentra-

tions and analyzed via particle induced X-ray emission

(PIXE) for Na to Mn, X-ray fluorescence (XRF) for Fe to

Pb, proton elastic scattering analysis (PESA) for elemental

hydrogen concentration (University of California at Davis,

CA, USA). The Nylon filter was analyzed via ion

chromatography (IC) for sulfate (SO4
2�), nitrate (NO3

�),

and chloride (Cl�) (Research Triangle Institute, NC, USA).

The quartz filter was analyzed via IMPROVE/TOR proto-

col16 for eight temperature resolved carbon fractions (Desert

Research Institute, NV, USA). This protocol volatilizes

organic carbon (OC) by four temperature steps in a helium

atmosphere: OC1 at 1201C, OC2 at 2501C, OC3 at 4501C,

and OC4 at 5501C. After OC4 response returns to baseline

or a constant value, the pyrolysed organic carbon (OP) is

oxidized at 5501C in a mixture of 2% oxygen and 98%

helium atmosphere prior to the return of reflectance to its

original value. Then three element carbon (EC) fractions are

measured in oxidizing atmosphere: EC1 at 5501C, EC2 at

7001C, and EC3 at 8501C.

Phoenix AZ
Daily, integrated 24-h samples were collected on 37mm

diameter Teflon and quartz filter media for fine particle mass

and species measurements using a dual fine particle sequential

sampler (DFPSS). The samples were collected during the

time period from March 1995 through June 1998. A total of

981 samples was finally obtained. Two energy dispersive

X-ray spectrometers were used to produce the chemical

elemental concentration data; a custom-made machine from

Lawrence Berkeley Laboratories (LBL) and a commercially

available one from Kevex (KEV). Both XRF instruments

employed multiple choices for secondary excitation and

utilized a helium atmosphere rather than vacuum in order to

preserve volatile species. The quartz filters collected with the

DFPSS were analyzed by Sunset Laboratory, Forest Grove,

OR, USA using the thermal optical transmission technique

(Chow et al., 1993). This technique measured both OC and

EC. Each sample was characterized by the measured

concentrations of the following 46 chemical elements: Na,

Mg, Al, Si, P, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni,

Cu, Zn, Ga, Ge, As, Se, Br, Rb, Sr, Y, Zr, Mo, Rh, Pd, Ag,
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Cd, Sn, Sb, Te, I, Cs, Ba, La, W, Au, Hg, Pb, OC, and EC.

This 981� 46 data matrix was used as the basis for the

receptor modeling studies to infer possible aerosol sources. In

this data matrix, there were some missing values (e.g., the

LBL instrument could not quantify the elements Na and Mg

due to the instrument design) and below-detection-limit

values. The analytical uncertainty estimates associated with

each measured concentration and the detection limits for

both instruments were also reported for each analyte and

sample.

Receptor model methods

The fundamental principle of receptor modeling is that mass

conservation can be assumed and a mass balance analysis can

be used to identify and apportion sources of airborne PM in

the atmosphere. The approach to obtaining a data set for

receptor modeling is to determine a large number of chemical

constituents such as elemental concentrations in a number of

samples. A mass balance equation can be written to account

for all m chemical species in the n samples as contributions

from p independent sources

xij ¼
XP

p¼1

gipfjp ð1Þ

where xij is the measured concentration of the jth species in

the ith sample, fjp is the concentration of the jth species in

material emitted by source p, gip is the contribution of the pth

source to the ith sample, and eij is the portion of the

measurement that cannot be fit by the model. There are a

variety of ways to solve Eq. (1) depending on what

information is available.

Source Profiles Known
If the number and nature of the sources in the region are

known (i.e., P and fjp’s), then the only unknown is the mass

contribution of each source to each sample, gip. These values

can be estimated using regression. This approach was first

independently suggested by Winchester and Nifong (1971)

and by Miller et al. (1972) and is now called the Chemical

Mass Balance (CMB) model (Cooper et al., 1984). The

problem is typically solved using effective-variance least-

squares approach (Cooper et al., 1984) using software that is

available from the US Environmental Protection Agency

(Watson et al., 1990). Recent CMB studies have been

reviewed by Chow and Watson (2002), who concluded that

CMB effectively apportioned primary particle sources in a

number of studies. It can be used to test emissions

inventories. Overall, CMB models can perform well when

the pollution sources and their source emission profiles are

known with certainty, but this is not usually the case (e.g.,

due to lack of measured source profiles for particular local

sources and changes in source profiles between emission and

receptor locations from atmospheric processing). Therefore,

other methods are usually needed to address the challenge of

source apportionment when source information is not

available.

Source Profiles Unknown
Due to the general lack of local source-specific emission

information and changes in source emission constituent

profiles between emission and impact site (e.g., due to the

accretion of secondary aerosols, including sulfates), the area

of the most active area of method development has been for

the case when the source profiles are not known. These are

forms of factor analysis, but are quite different, in practice,

from traditional Principal Components Analysis (PCA). In

factor analysis, the problem is expanded to the solution of the

source profiles and contributions over a set of samples. Thus,

the basic equation in matrix form is

X ¼ GF 0 ð2Þ

where G is the matrix of source contributions and F0 is the

transpose of the matrix of source profiles.

Principal Component Analysis
PCAs has been applied to particle compositional data since

the 1960s (Blifford and Meeker, 1967). Principal compo-

nents and factor analysis are names given to several of the

variety of forms of eigenvector analysis. PCA derives a

limited set of components that explain as much of the total

variance of all the observable variables (e.g., trace element

concentrations) as possible. Other forms of factor analysis

were originally developed and used in psychology to provide

mathematical models of psychological theories of human

ability and behavior (Harman, 1976). However, such

eigenvector analyses have found wide application throughout

the physical and life sciences. Unfortunately, a great deal of

confusion exists in the literature in regard to the terminology

of eigenvector analysis. Various changes in the way the

method is applied has resulted in it being called factor

analysis, PCA, principal components factor analysis, empiri-

cal orthogonal function analysis, Karhunen–Loeve trans-

form, etc, depending on the way the data are scaled before

analysis or how the resulting vectors are treated after the

eigenvector analysis is completed. All of the methods have

the same basic objectives; to compress the observable data

variables into fewer, underlying dimensions, and to then

identify the structure of interrelationships that exist between

the variables measured or the cases studied.

Principal component and factor analyses attempt to

simplify the description of a system by determining a

minimum set of basis vectors that span the data space to

be interpreted. In other words, a new set of variables are

found as linear combinations of the measured variables so
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that the observed variations in the system can be reproduced

by a smaller number of these þ factors. It has been widely

used in studies of airborne PM composition data (e.g.,

Hopke et al., 1976; Roscoe et al., 1982; Gao et al., 1994).

Classical PCA identifies source components and the amount

of variance explained by each, but does not directly pro-

vide a quantitative source apportionment of the pollution

mass in the form presented in Eq. (1). However, the

component solutions can be manipulated to provide such a

solution.

One approach is specific rotation factor analysis

(Koutrakis and Spengler, 1987). It uses a targeted Pro-

crustes rotation. Targets chosen were based on experience

with the Six Cities Cohort, composition of sources, and

knowledge of the sampling site. A few different targets were

also considered.

An alternative approach called Absolute Principal Com-

ponents Analysis (APCA) (Thurston and Spengler, 1985)

has also been used to produce quantitative apportionments.

The initial PCA results are rotated and then the component

scores are uncentered (relative to a zero pollution reference

case), allowing the PM2.5 mass values to be regressed against

the scores to provide scaling coefficients for both the

component scores (related to source impacts) and component

loadings (related to source profiles). The solutions are thus

optimized to explain concentration data variance without

restricting the acceptable mass concentrations. This solution

minimizes subjective rotations since it uses a Varimax

rotation. However, when source impacts are low, negative

observable tracer concentration data (that can be reported at

low ambient concentrations) can potentially result in negative

source contributions with this method.

Confirmatory factor analysis (CFA) is similar to standard

(exploratory) factor analysis, but is based on a hypothesized

model and can yield a physically interpretable and uniquely

estimable solution. The cost of CFA is that it requires that at

least some of the rows of the source profile matrix be known.

CFA has been used in the pollution source apportionment

setting by CFA models (e.g., Yang, 1994; Gleser, 1997;

Christensen and Sain, 2002). A recent modification of CFA

is the iterated confirmatory factor analysis (ICFA) approach,

which can take on aspects of chemical mass balance analysis,

exploratory factor analysis, and CFA by assigning varying

degrees of constraint to the elements of the source profile

matrix when iteratively adapting the hypothesized profiles to

conform to the data (Christensen et al., 2004). This approach

attempts to maximally utilize a priori source profile informa-

tion to reduce indeterminacy and enhance interpretability in a

multivariate receptor modeling scenario.

Two newer factor-based approaches are UNMIX (Henry

and Kim, 1990; Kim and Henry, 1999, 2000) and Positive

Matrix Factorization (PMF) (Paatero, 1997, 1999; Paatero

et al., 2002). As described below, these methods place

restrictions on the possible source impact solutions to require

them to meet certain physical constraints (e.g., non-negative

source impacts).

Unmix
The fundamental philosophy behind the Unmix model is to

impose as few assumptions as possible thereby letting the

data speak for themselves. The Unmix model has been

developed for the US EPA by Dr. Henry and has several

unique features. The most recent version is EPA Unmix 3.0.

Earlier versions do not have all the features mentioned below.

Unmix has an advanced computationally intensive algorithm

to estimate the number of sources that can be seen above the

noise level in the data (Henry et al., 1999; Park et al., 2000).

Given this estimated number of sources, Unmix uses PCA to

reduce the dimensionality of the data space. Geometrical

concepts of self-modeling curve resolution are used to ensure

the results obey (to within error) nonnegativity constraints on

source compositions and contributions. This, however, is not

sufficient to uniquely determine the source compositions and

contributions (Henry, 1987). Additional constraints deter-

mined from the data itself are needed. These are estimated by

looking for edges in the data determined by points where one

source is small compared to the other sources (Henry, 1997,

2003). Some special features of Unmix are the capability to

replace missing data and the ability to estimate large numbers

of sources (the current limit is 15) using duality concepts

applied to receptor modeling (Henry, 2005). Unmix

estimates uncertainties in the source compositions using a

blocked bootstrap approach that takes into account serial

correlation in the data. The latest version of Unmix is

available from the US EPA, Dr. Gary Norris (Norris.

Gary@epamail.epa.gov).

Recently, the model has also been applied to the Phoenix,

Arizona data (Lewis et al., 2003). The analysis generated

source profiles and overall average percentage source

contribution estimates for five source categories: gasoline

engines (3374%), diesel engines (1672%), secondary

sulfate (1972%), crustal/soil (2272%), and vegetative

burning (1072%). They were able to separate motor vehicle

contributions into diesel and spark-ignition sources. Diesel

emissions were identified by high elemental carbon relative to

the OC whereas spark ignition vehicles had a profile with

more organic than elemental carbon. The diesel source

contributions were much larger on weekdays than weekends,

as expected. These results are quite similar to those derived

by Henry for this study. Lewis et al. compared their results to

those of Ramadan et al. (2000) and found good agreement

except for the traffic sources. Lewis et al. had more diesel and

less gasoline emissions when compared to Ramadan et al.,

but the total traffic contributions were similar.

Positive Matrix Factorization
PMF takes a very different approach to the factor analysis

problem. All of the other methods use an eigenvector analysis

PM source apportionment and health effectsHopke et al.
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based on a singular value decomposition (SVD). Any matrix,

X, can be defined as

X ¼ USV 0 ¼ USV 0 þ E ð3Þ
where Ū and V̄ are the first p columns of the U and V

matrices. The U and V matrices are calculated from

eigenvalue-eigenvector analyses of the XX0 and X0X matrices,

respectively. It can be shown (Lawson and Hanson, 1974;

Malinowski, 1991) that the second term on the right-hand

side of Eq. (3) estimates X in the least-squares sense that it

gives the lowest possible value for

Xm

i¼1

Xn

j¼1

e2ij ¼
Xm

i¼1

Xn

j¼1

xij �
XP

p¼1

gipfjp

" #2

ð4Þ

Thus, an eigenvector analysis is an implicit least-squares

analysis in that it is minimizing the sum of squared residuals

for the model. Paatero and Tapper (1993, 1994) show that in

effect in PCA, there is scaling of the data by column or by

row in order to normalize the data, and that this scaling will

lead to distortions in the analysis. They further show that

optimum scaling of the data would be to scale each data

point individually so as to have the more precise data having

more influence on the solution than points that have higher

uncertainties. However, they show that point-by-point

scaling results in a scaled data matrix that cannot be

reproduced by a conventional factor analysis based on

the singular value decomposition. Thus, PMF takes the

approach of an explicit least-squares approach in which

the method minimizes the object function:

Q ¼ �a
n

j¼1
�a
m

i¼1

xij ��aP
p¼1gipfjp

sij

�����
�����
2

ð5Þ

where sij is an estimate of the ‘‘uncertainty’’ in the jth variable

measured in the ith sample. The factor analysis problem is

then to minimize Q(E) with respect to G and F with the

constraint that each of the elements of G and F is to be non-

negative.

Over the past several years, several approaches to solving

the PMF problem have been developed. Initially, a program

called PMF2 utilizes a unique algorithm (Paatero, 1997) for

solving the factor analytic task. PMF2 has been used in a

number of recent factor analytic studies (Anttila et al., 1995;

Huang et al., 1999; Polissar et al., 1996, 1998, 1999, 2001;

Prendes et al., 1999; Xie et al., 1999a; Lee et al., 1999, 2002,

2003; Paterson et al., 1999; Chueinta et al., 2000; Ramadan

et al., 2000; Anderson et al., 2001, 2002; Claiborn et al.,

2002; Miller et al., 2002; Qin et al., 2002; Begum et al., 2004;

Buzcu et al., 2003; Gao et al., 2003; Kim et al., 2003a, b,

2004; Larsen and Baker, 2003; Maykut et al., 2003; Qin and

Oduyemi, 2003; Hien et al., 2004; Kim and Hopke,

2004a, b; Larson et al., 2004; Zhou et al., 2004).

Subsequently, an alternative approach that provides a

flexible modeling system, the multilinear engine (ME), has

been developed for solving the various PMF factor analysis

least-squares problems (Paatero, 1999). ME has already been

applied to a number of environmental problems (Xie et al.,

1999b; Paatero and Hopke, 2002; Hopke et al., 2003; Kim

et al., 2003c; Paatero et al., 2003; Ramadan et al., 2003;

Chueinta et al., 2004). It is possible to expand the source

contribution value to a set of products as follows:

xij ¼
XP

p¼1

mipfjp þ eij ð6Þ

where the source contribution, gip, has been replaced by the

modeling term, mip. This modeling term describes the various

physical factors that affect the observed concentrations

mip ¼Wðoi; pÞSðsi; pÞIðii; pÞ

Pðri; pÞCðwi; pÞaip

X24
h¼1

Dðdih; pÞVðnih; pÞ
ð7Þ

where D(dih, p) is the element of D with the index for the

wind direction during hour h of day i for the pth source,

V(nih, p) is the element of Vwith the index for the wind speed

during hour h of day i for the pth source, W(oi, p) is the

element of W with the index corresponding to day i for the

weekday/weekend factor for the pth source, S(si, p) is the

Table 1. Summary of the data analyses performed by the various

participating groups.

Group Phoenix, AZ data Washington, DC data

BYU

Eatough UNMIX UNMIX

Christensen Iterated confirmatory FA

Clarkson (CU)

Hopke/Kim PMF2

ME

Expanded

Model (ME)

PMF2

GSF

Stolzel APCA

Harvard (HU)

Laden/Neas Target rotated PCA Target rotated PCA

NYU

Thurston/Ito/Lall PMF2 and APCA PMF2, APCA, and single

element multiple regression

USC

Henry UNMIX UNMIX

U. Washington

Larson PMF2

PM source apportionment and health effects Hopke et al.
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element of the seasonal matrix, S, with the index correspond-

ing to the time-of-year classification of day i for the pth

source, I(ii, p) is the inlet factor. P(ri, p) is a correction factor

for days when there is precipitation while C(wi, p) is a factor

for dry days.

Intercomparison results

The design of this intercomparison study was to provide the

two data sets that are outlined above for which there existed

both PM2.5 compositional and mortality data. Each of the

Source Apportionment Workshop participants provided

source resolutions using their preferred method(s). Table 1

summarizes the data analyses that were performed on these

data sets. These results were then combined with the

mortality data in the analyses described in the companion

papers by Ito et al. (2005) and Mar et al. (2005).

Washington, DC
There was a wide range of results for the various analyses in

terms of the number of source factors identified. Table 2

presents the names of the sources as provided by the

participants that were identified from the Washington DC

data. There are a number of similarities in the resolved

profiles. The profiles for the secondary nitrate, oil-fired power

plants, and soil show considerable similarities across the

various Workshop research groups and analysis methods.

One of the problems with factor analysis methods is that

there is rotational ambiguity in the solutions (Henry, 1987).

The problem is discussed in more detail by Paatero et al.

(2002, 2005).

Many of the groups resolved two secondary sulfate factors,

as had previously been reported by Polissar et al. (2001) and

Song et al. (2001). These factors represent the differences in

secondary photochemical transformation of SO2 to SO4
2�

(that varies by season), relative to the primary emission of S

and Se by coal-fired power plants (which is more consistent

year-round). Thus, the total secondary sulfate contributions

have been calculated by summing these multiple factors. The

correlations between pairs of total sulfate contributions are

given in Table 3. In general, there are strong correlations

across these sulfate source contribution estimates. Figure 1

shows the distributions of the correlation coefficients

obtained between the pairs of results from different

investigators for the same source types.

For motor vehicles, there were some of the analyses that

separated diesel emissions from spark-ignition vehicles, while

other analyses only reported a total motor vehicle emissions

source reported that diesels operating at very slow speed and

in stop and go traffic produce OC/EC ratios that are like

typical spark-ignition emissions (Shah et al., 2004). As much

as five times more OC is generated than EC in the cold start/

idle mode of heavy-duty diesel vehicles. Thus, the separation

of these two sources based on OC and EC values is difficult.

Table 2. Factor names as assigned by the participants for Washington,
DC results.

Group/name

analysis

n Factor names

HU

Target Rotated

FA

3 Crustal, Coal/2ndary, Auto

BYU/DE

Unmix

6 Wood Smoke, Unknown Pb, Mobile, Winter

2ndary, Summer 2ndary, Crustal

BYU/WC

Confirmatory FA

8 Wood, Secondary Sulfate, Second_1, Soil,

Second_2, Auto/Diesel, Salt, Pb Smelter

USC

Unmix

8 Diesel Vehicle, Nitrate, Se, Soil, Sulfate,

Gasoline Vehicle, V, As

CU/EK

PMF2 (with C

Fractions)

10 Sulf_1, Gasoline Vehicle, Sulf_2, Nitrate,

Sulf_3, Incinerator, Aged Sea Salt, Soil,

Diesel, Oil

CU/XS

PMF2

8 Sec. Sulfate, Coal Combustion, Oil

Combustion, Soil, Incinerator, Sea Salt,

Nitrate, Motor Vehicles

NYU/A

APCA

10 Sulfate, Soil, Traffic1, Oil, Traffic2, Industry,

Incinerator, Wood, As, Salt

NYU/P

PMF2

10 Oil, Soil, Wood, Sulfate1, Sulfate2, Nitrate,

Traffic1, Traffic2, Se, Salt

NYU regression 7 Sulfate, Nitrate, Oil, Traffic, Wood, Soil,

Primary Coal

Table 3. Correlation coefficients between the sum of sulfate factor contributions derived from the Washington, DC data.

HU BYU/WC BYU/DE USC CU/EK CU/XS NYU/A NYU/P

HU 0.690 0.530 0.413 0.483 0.544 0.655 0.537

BYU/WC 0.690 0.817 0.813 0.855 0.832 0.837 0.821

BYU/DE 0.530 0.817 0.927 0.912 0.953 0.787 0.917

USC 0.413 0.813 0.927 0.948 0.955 0.848 0.926

CU/EK 0.483 0.855 0.912 0.948 0.962 0.895 0.946

CU/XS 0.544 0.832 0.953 0.955 0.962 0.861 0.952

NYU/A 0.655 0.837 0.787 0.848 0.895 0.861 0.883

NYU/P 0.537 0.821 0.917 0.926 0.946 0.952 0.883
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In some cases, there was an identification of multiple

‘‘traffic’’ sources without specific attribution to the types of

engine emissions involved. The multiple motor vehicle source

contributions are summed and these values compared in

Table 4. There is greater variability in these values with

several of the time series clearly being quite different from the

others.

An ANOVA analysis was performed on the mean source

contributions to examine the between-source as compared to

the between-group variance. Figure 2 presents the central

estimate of the source contributions and the 95% confidence

intervals. The results show that between-source variance is

greater than between-group variance with Po0.001.

The mean and the standard deviations of the various

source contributions are summarized in Table 5, where

sources have been grouped based on their similarity in source

composition profiles. With the exception of the BYU

Confirmatory FA, there is good agreement in the secondary

sulfate contributions. The soil contributions were very similar

except for the Harvard PCA value. The total traffic

contributions were similar with the exception of the BYU

Unmix, the CU OC/EC PMF and the NYU PMF values

that are lower than the others. Table 5 also provides the

mean, standard deviations, standard error of the mean and

percent standard error for each of the sources that were

generally resolved from the Washington data. For the major

contributing sources the agreement is quite reasonable as

indicated by the percent standard error. For those sources for

which their contributions were small, there tended to be more

scatter in the results and a larger standard error.

With respect to the other source types, similar contribu-

tions were obtained when similar profiles were extracted.

However, there was not uniformity in the number and nature

of the profiles. Some of this variability may arise from

operator choices made in the use of these factor analysis

methods and some may come from difference in data

screening that led to differences in the chemical species and

samples included in the analyses.

Phoenix, AZ
The names of the various sources that have been resolved

from the analyses of the Phoenix data are presented in

Table 6. The mean and standard deviations for the source

contributions are summarized in Table 7. Again, as in the

Washington, DC results, there is a general convergence in

terms of the source profiles and contributions, particularly

for the major mass contribution sources. Table 7 also

provides mean contributions, standard deviations, standard

error of the mean and percent standard error for the

identified source categories. It is again necessary to combine

source types like spark ignition and diesel to provide a total

traffic estimate to obtain good concurrence among the

various estimates. For the combined sources (traffic, metals,

secondary), the agreement is quite reasonable given the

different choices of elements, samples and model parameters

to include in the analyses.

An analogous ANOVA analysis was performed for these

results and the mean and confidence intervals are shown in

Figure 3. Again the between-source variance is greater than

between-group variance with Po0.001.

Figure 4 shows the distribution of correlation coefficients

between the possible pairs of results for similar source types.

Again, several of the groups have been able to resolve several

traffic related sources that have been tentatively assigned to

be diesel and spark-ignition emissions. In the case of ‘‘diesel’’

Table 4. Correlation coefficients between the sum of motor vehicle factor contributions derived from the Washington, DC data.

HU BYU/WC BYU/DE USC CU/EK CU/XS NYU/A NYU/P

HU 0.354 0.351 0.084 0.290 0.458 0.248 0.419

BYU/WC 0.354 0.109 �0.002 0.193 �0.072 0.135 �0.049

BYU/DE 0.351 0.109 0.276 0.795 0.575 0.538 0.650

USC 0.084 �0.002 0.276 0.444 0.113 0.647 0.387

CU/EK 0.290 0.193 0.795 0.444 0.564 0.713 0.650

CU/XS 0.458 �0.072 0.575 0.113 0.564 0.463 0.898

NYU/A 0.248 0.135 0.538 0.647 0.713 0.463 0.606

NYU/P 0.419 �0.049 0.650 0.387 0.650 0.898 0.606
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Figure 1. Box and whisker plots showing the distributions of
correlation coefficients between the possible pairs of similar source
contributions resolved from the Washington, DC data.
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profiles, manganese appears as previously reported (Rama-

dan et al., 2000, 2003; Lewis et al., 2003). There were more

unique sources identified by the various investigators that

made comparisons more difficult than for Washington.

Conclusion

Many similar sources have been identified despite various

investigators and different methods being employed. Crustal

(soil), sulfate, oil, and salt were most unambiguously

identified (generally highest correlation across the sites).

Owing to the differences in the resolution of motor vehicle

sources, the individual traffic sources are not as well

correlated among the results. If the total motor vehicle

contributions are estimated, better correspondence among

the results is obtained. While these analyses indicate that it

Table 5. Estimated mean PM2.5 source contributions (SD) in mg/m3 for Washington, DC.

Group/name

analysis

ID Nfac Soil/

crustal

Traffic &

diesel

Secondary

sulfate

Nitrate Oil Wood smoke Salt Incinerator Others

Harvard

Target FA

A 3 3.7 (2.0) 4.6 (2.0) 7.6 (4.0)

BYU/WC

Confirmatory FA

B 8 0.5 (1.0) 3.7 (2.5) 5.1 (4.3) 6.7 (3.5) 1.9 (1.9) 0.9 (0.9) Pb smelter

0.5 (0.7)

BYU/DE

Unmix

C 6 0.8 (0.6) 2.0 (1.6) 8.4 (7.3) 6.7 (5.6) 0.2 (0.5) 0.3 (0.4)

USC/RH

Unmix

D 8 0.7 (1.1) 4.7 (3.5) 7.8 (6.8) 2.5 (2.6) 0.3 (0.3) Primary coal:

1.2 (1.0)

As: 0.7 (0.5)

gas: 1.8 (1.8)

dsl: 2.9 (2.6)

CU

PMF/C

fractions

E 10 0.3 (0.5) 4.1 (3.1) 10.6 (7.1) 1.6 (1.6) 0.3 (0.4) 0.4 (0.4) 0.7 (0.5)

gas: 3.8 (2.9) sulf1:7.7 (6.7)

dsl: 0.3 (0.3) sulf2:1.9 (1.9)

sulf3:1.1 (0.7)

CU

PMF/OC-EC

F 8 0.5 (0.7) 1.6 (1.2) 8.4 (6.5) 3.5 (3.0) 0.6 (0.8) 0.6 (0.5) 1.0 (0.6) Primary coal:

1.7 (1.1)

NYU

APCA

G 10 1.0 (1.5) 4.2 (2.8) 9.6 (7.1) 0.6 (1.2) 0.2 (0.4) 0.9 (1.4) 0.6 (0.7) Industry1:

0.1 (.01)

Industry2:

0.3 (0.7)

trfc1: 1.8 (1.7)

trfc2: 2.4 (2.1)

NYU

PMF

H 10 0.5 (0.7) 2.5 (1.4) 10.7 (6.9) 2.5 (2.5) 0.3 (0.4) 0.3 (1.1) 0.2 (0.2) Se: 1.5 (1.0)

trfc1: 1.1 (0.7) sulf1: 3.4 (3.5)

trfc2: 1.4 (1.1) sulf2: 7.3 (5.3)

NYU

MLR

I 7 1.1 (1.3) 3.5 (1.3) 9.8 (6.3) 2.1 (1.9) 0.4 (0.4) 0.6 (0.7) Primary coal:

2.1 (1.2)

Mean value (SD) 1.01 (1.04) 3.32 (1.18) 8.67 (1.76) 3.66 (2.16) 0.42 (0.15) 0.60 (0.31) 0.64 (0.72) 0.65 (0.29)

SEM (%) 0.347 (34.3) 0.393 (11.8) 0.587 (6.77) 0.815 (22.3) 0.17 (40.8) 0.14 (23.0) 0.32 (50.5) 0.14 (22.2)
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Figure 2. Plot of the ANOVA results for the Washington, DC data.
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may be possible to separate diesel from gasoline vehicle

impacts, further research is needed to ascertain the degree to

which the various components of motor vehicular emissions

(diesel and spark-ignition) can be separately identified and

quantified. However, the overall consistency by source

category provided impacts that were very similar for the

larger mass contributors across various analyses (e.g., in

Washington, secondary sulfate SE¼ 7% and 11% for traffic

Table 6. Factor names as assigned by the participants for Phoenix, AZ results.

Group Analysis

Eatough-Summer Unmix Primary, Secondary, Mobile, Crustal

Eatough-Winter Unmix Primary, Secondary, Mobile, Crustal

Ramadan et al. (2000) PMF2 Biomass burning, diesel, soil, Cu smelter, motor vehicle, salt, secondary sulfate, other

burning/fireworks

Ramadan et al. (2003) ME Diesel, biomass burning, soil, Cu smelter, coal fired power plant, salt, spark ignition

Hopke Expanded Analysis Soil, marine, fireworks, S+V, OCEC, Pb+, Cd+, Mn, wood, mass, metal, Cu

Henry Unmix Diesel, vegetative burning, sulfate, gasoline vehicles, soil, Pb, Ni, Zn, traffic (diesel+gasoline)

Stölzel APCA Traffic/oil, coal, wood, soil

Laden PCA Crustal material, mobile sources, local industry, fuel oil, woodsmoke

Larson PMF2 Soil, secondary sulfates, metal, Cl rich, veg/motor, diesel, motor/veg

NYU APCA Crustal, traffic, smelter, primary coal burning, diesel, vegetative burning, secondary aerosol,

sea salt, unknown (phosphorous)

NYU PMF2 Diesel, secondary aerosol, vegetative burning, smelter, wood burning, primary coal burning,

traffic, sea salt, crustal

Table 7. Estimated mean PM2.5 source contributions (SD) in mg/m3 for Phoenix, AZ.

Motor

vehicle

Diesel Crustal Sea salt Biomass/wood

combustion

Metals Secondary Other

Eatough-Summer Mobile 2.95 (2.64) 1.17 (0.88) Primary emissions: 0.57 (0.53) 3.83 (2.23)

Eatough-Winter Mobile 5.09 (4.82) 1.01 (0.87) Primary emissions: 5.88 (5.73) 5.61 (3.08)

Ramadan PMF 4.90 (4.06) 1.65 (1.40) 2.08 (1.30) 0.07 (0.16) 1.22 (0.92) 0.80 (1.16) 0.30 (0.67) Wildfire/

fireworks:

0.76 (0.83)

Ramadan ME 3.58 (2.97) 0.44 (0.47) 0.84 (0.70) 0.05 (0.11) 1.00 (0.76) 0.18 (0.25) 1.30 (0.80)

Hopke 4.35 (3.61) 0.60 (0.58) 2.58 (2.21) 0.12 (0.26) 0.46 (0.32) Cu: 0.68

(0.66)

1.72 (0.87) Unmeas.

mass: 2.35

(1.86)

Metals: 0.27

(0.37)

Firewks:

0.04 (0.08)

Pb+: 0.21

(0.23)

Cd+: 0.16

(0.25)

Henry 3.94 (3.37) 1.14 (1.12) 2.53 (2.05) 0.93 (0.95) Pb: 1.06 (1.38) 1.91 (1.21) Ni: 0.58 (0.75)

Zn: 0.25 (0.33)

Stölzel Mobile 5.68 (3.33) 1.15 (0.65) 2.32 (1.26) 3.31 (1.68)

Laden Mobile: 7.66 (5.18) 1.82 (1.15)

Larson 5.73 (4.43) 0.79 (0.78) 1.10 (0.81) 0.17 (0.31) 2.13 (1.58) 0.56 (0.74) 3.59 (2.19)

NYU-A 6.45 (4.67) 0.39 (1.22) 2.08 (2.54) 0.08 (0.26) 1.22 (1.35) 0.71 (1.26) 1.79 (0.94) Unknown (P):

0.41 (1.10)

NYU-P 4.82 (4.03) 1.61 (1.82) 1.17 (1.02) 0.08 (0.18) 1.72 (1.41) 0.16 (0.17) 2.86 (1.90) Wood: 0.12

(0.27)

Mean value (SD) 5.66 (1.22) 1.64 (0.65) 0.095 (0.043) 1.44 (0.66) 1.34 (1.14) 2.39 (1.35)

SEM (%) 0.384 (6.79) 0.205 (12.5) 0.017 (18.2) 0.248 (17.2) 0.548 (40.9) 0.426 (17.8)
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impacts; in Phoenix, secondary sulfate SE¼ 17% and 7%

for traffic).

Especially important for time-series health effects assess-

ment, the source-specific impacts across analyses were also

found to be highly correlated across analyses methods/

researchers for the major components (e.g., mean analysis to

analysis correlation, r40.9 for traffic and secondary sulfates

in Phoenix and for traffic and secondary nitrates in

Washington. The sulfate has mean r40.75 in Washington).

Overall, although these intercomparisons suggest areas where

further research is needed (e.g., into the better division of

traffic emissions between diesel and gasoline fueled), they also

provide considerable support to the contention that PM2.5

mass source apportionment results are consistent across users

and methods, and that today’s mass apportionment methods

are robust enough for reliable application to PM2.5 health

effects assessments.
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