Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Evaluation of elemental carbon as a marker for diesel particulate matter

Abstract

Elemental carbon (EC) in atmospheric particulate matter originates from a broad range of sources in many urban locations. As health and air quality studies are using elemental carbon measurements to better understand the impact of diesel engines and other combustion sources, there is a great need to clearly understand the relative source contributions to EC concentrations in the atmosphere. However, the different analytical techniques currently used to measure EC do not show good agreement for many particulate matter samples. To this end, studies that use EC as a tracer and integrate different analytical techniques for EC can significantly bias estimates of source contributions to atmospheric particulate matter. In addition, source attribution studies that do not properly address all sources of EC in the atmosphere can also lead to inaccuracies and biases. To better understand the use of EC as a tracer, a review of the distribution of EC in the primary particulate matter emissions from air pollution sources using different analytical methods is discussed. A review of previous apportionment studies of particulate matter is presented to elucidate the fraction of EC that results from emissions from diesel engines in urban locations. These results demonstrate that EC is not a unique tracer for diesel exhaust and efforts to utilize EC as an indicator of diesel exhaust must properly address other sources of EC as well as utilize a consistent measurement technique for EC when comparing source and ambient EC measurements to avoid significant biases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Babich P., Davey M., Allen G., and Koutrakis P . Method comparisons for particulate nitrate, elemental carbon, and PM2.5 mass in seven US cities. J Air Waste Manage Assoc 2000: 50: 1095–1105.

    Article  CAS  Google Scholar 

  • Ballach J., Hitzenberger R., Schultz E., and Jaeschke W . Development of an improved optical transmission technique for Black Carbon (BC) analysis. Atmos Environ 2001: 35: 2089–2100.

    Article  CAS  Google Scholar 

  • Bhave P.V., Fergenson D.P., Prather K.A., and Cass G.R . Source apportionment of fine particulate matter by clustering single-particle data: Tests of receptor model accuracy. Environ Sci Technol 2001: 35: 2060–2072.

    Article  CAS  Google Scholar 

  • Birch M.E . Analysis of carbonaceous aerosols: interlaboratory comparison. Analyst 1998: 123: 851–857.

    Article  CAS  Google Scholar 

  • Birch M.E., and Cary R.A . Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci Technol 1996: 25: 221–241.

    Article  CAS  Google Scholar 

  • Bond T.C., Anderson T.L., and Campbell D . Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols. Aerosol Sci Technol 1999: 30: 582–600.

    Article  CAS  Google Scholar 

  • Bond T.C., Charlson R.J., and Heintzenberg J . Quantifying the emission of light-absorbing particles: measurements tailored to climate studies. Geophys Res Lett 1998: 25: 337–340.

    Article  Google Scholar 

  • Borak J., Sirianni G., Cohen H.J., Chemerynski S., and Wheeler R . Comparison of NIOSH 5040 method versus aethalometer (tm) to monitor diesel particulate in school buses and at work sites. AIHA J 2003: 64: 260–268.

    Article  CAS  Google Scholar 

  • Cachier H., Bremond M.P., and Buatmenard P . Thermal separation of soot carbon. Aerosol Sci Technol 1989: 10: 358–364.

    Article  CAS  Google Scholar 

  • Cadle S.H., Groblicki P.J., and Stroup D.P . Automated carbon analyzer for particulate samples. Anal Chem 1980: 52: 2201–2206.

    Article  CAS  Google Scholar 

  • Cadle S.H., and Mulawa P.A . Atmospheric carbonaceous species measurement methods comparison study — General-Motors results. Aerosol Sci Technol 1990: 12: 128–141.

    Article  Google Scholar 

  • Cadle S.H., Mulawa P.A., Hunsanger E.C., Nelson K., Ragazzi R.A., Barrett R., Gallagher G.L., Lawson D.R., Knapp K.T., and Snow R . Composition of light-duty motor vehicle exhaust particulate matter in the Denver, Colorado area. Environ Sci Technol 1999: 33: 2328–2339.

    Article  CAS  Google Scholar 

  • Chow J.C., Watson J.G., Crow D., Lowenthal D.H., and Merrifield T . Comparison of IMPROVE and NIOSH carbon measurements. Aerosol Sci Technol 2001: 34: 23–34.

    Article  CAS  Google Scholar 

  • Chow J.C., Watson J.G., Pritchett L.C., Pierson W.R., Frazier C.A., and Purcell R.G . The DRI thermal optical reflectance carbon analysis system — description, evaluation and applications in United-States air-quality studies. Atmos Environ 1993: 27: 1185–1201.

    Article  Google Scholar 

  • Christoforou C.S., Salmon L.G., Hannigan M.P., Solomon P.A., and Cass G.R . Trends in fine particle concentration and chemical composition in Southern California. J Air Waste Manage Assoc 2000: 50: 43–53.

    Article  CAS  Google Scholar 

  • Clark N.N., Kern J.M., Atkinson C.M., and Nine R.D . Factors affecting heavy-duty diesel vehicle emissions. J Air Waste Manage Assoc 2002: 52: 84–94.

    Article  CAS  Google Scholar 

  • Currie L.A., Benner B.A., Kessler J.D., Klinedinst D.B., Klouda G.A., Marolf J.V., Slater J.F., Wise S.A., Cachier H., Cary R., Chow J.C., Watson J., Druffel E.R.M., Masiello C.A., Eglinton T.I., Pearson A., Reddy C.M., Gustafsson O., Quinn J.G., Hartmann P.C., Hedges J.I., Prentice K.M., Kirchstetter T.W., Novakov T., Puxbaum H., and Schmid H . A critical evaluation of interlaboratory data on total, elemental, and isotopic carbon in the carbonaceous particle reference material, NIST SRM 1649a. J Res Nat Inst Standards Technol 2002; 107(3): 279–298.

    Article  CAS  Google Scholar 

  • Cyrys J., Heinrich J., Hoek G., Meliefste K., Lewne M., Gehring U., Bellander T., Fischer P., Van Vliet P., Brauer M., Wichmann H.E., and Brunekreef B . Comparison between different traffic-related particle indicators: elemental carbon (EC), PM2.5 mass, and absorbance. J Expos Anal Environ Epidemiol 2003: 13: 134–143.

    Article  CAS  Google Scholar 

  • Ellis E.C., and Novakov T . Application of thermal-analysis to the characterization of organic aerosol-particles. Sci Total Environ 1982: 23: 227–238.

    Article  CAS  Google Scholar 

  • Fine P.M., Cass G.R., and Simoneit B.R.T . Characterization of fine particle emissions from burning church candles. Environ Sci Technol 1999: 33: 2352–2362.

    Article  CAS  Google Scholar 

  • Fung K . Particulate carbon speciation by MnO2 oxidation. Aerosol Sci Technol 1990: 12: 122–127.

    Article  CAS  Google Scholar 

  • Ge S., Bai Z.P., Liu W.L., Zhu T., Wang T.J., Qing S., and Zhang J.F . Boiler briquette coal versus raw coal: Part I — stack gas emissions. J Air Waste Manage Assoc 2001: 51: 524–533.

    Article  CAS  Google Scholar 

  • Gertler A.W., Abu-Allaban M., Coulombe W., Gillies J.A., Pierson W.R., Rogers C.F., Sagebiel J.C., Tarnay L., and Cahill T.A . Measurements of mobile source particulate emissions in a highway tunnel. Int J Vehicle Des 2001: 27: 86–93.

    Article  Google Scholar 

  • Goldberg E.D. Black Carbon in the Environment. Wiley, New York, 1985.

    Google Scholar 

  • Gray H.A., and Cass G.R . Source contributions to atmospheric fine carbon particle concentrations. Atmos Environ 1998: 32: 3805–3825.

    Article  CAS  Google Scholar 

  • Guillemin M., Cachier H., Chini C., Dabill D., Dahmann D., Diebold F., Fischer A., Fricke H.H., Groves J.A., Hebisch R., Houpillart M., Israel G., Mattenklott M., Moldenhauer W., Sandino J.P., Schlums C., Sutter E., and Tucek E . International Round Robin tests on the measurement of carbon in diesel exhaust particulates. Int Arch Occup Environ Health 1997: 70: 161–172.

    Article  CAS  Google Scholar 

  • Guillemin M., Perret V., Dabill D., Grosjean R., Dahmann D., and Hebisch R . Further round robin tests to improve the comparability between laboratories of the measurement of carbon in diesel soot and in environmental samples. Int Arch Occup Environ Health 2001: 74: 139–147.

    Article  CAS  Google Scholar 

  • Hannigan M.P . Mutagenic particulate matter in air pollutant source emissions and the ambient air. Environ Eng Sci. California Institute of Technology, Pasadena, 1997, p. 221.

    Google Scholar 

  • Hansen A.D.A., Rosen H., and Novakov T . The aethalometer — an instrument for the real-time measurement of optical-absorption by aerosol-particles. Sci Total Environ 1984: 36: 191–196.

    Article  CAS  Google Scholar 

  • He K.B., Yang F.M., Ma Y.L., Zhang Q., Yao X.H., Chan C.K., Cadle S., Chan T., and Mulawa P . The characteristics of PM2.5 in Beijing, China. Atmos Environ 2001: 35: 4959–4970.

    Article  CAS  Google Scholar 

  • Hering S.V., Appel B.R., Cheng W., Salaymeh F., Cadle S.H., Mulawa P.A., Cahill T.A., Eldred R.A., Surovik M., Fitz D., Howes J.E., Knapp K.T., Stockburger L., Turpin B.J., Huntzicker J.J., Zhang X.Q., and McMurry P.H . Comparison of sampling methods for carbonaceous aerosols in ambient air. Aerosol Sci Technol 1990: 12: 200–213.

    Article  Google Scholar 

  • Hildemann L.M., Markowski G.R., and Cass G.R . Chemical-composition of emissions from urban sources of fine organic aerosol. Environ Sci Technol 1991: 25: 744–759.

    Article  CAS  Google Scholar 

  • Huffman G.P., Huggins F.E., Shah N., Huggins R., Linak W.P., Miller C.A., Pugmire R.J., Meuzelaar H.L.C., Seehra M.S., and Manivannan A . Characterization of fine particulate matter produced by combustion of residual fuel oil. J Air Waste Manage Assoc 2000: 50: 1106–1114.

    Article  CAS  Google Scholar 

  • Laden F., Neas L.M., Dockery D.W., and Schwartz J . Association of fine particulate matter from different sources with daily mortality in six US cities. Environ Health Persp 2000: 108: 941–947.

    Article  CAS  Google Scholar 

  • Lavanchy V.M.H., Gaggeler H.W., Nyeki S., and Baltensperger U . Elemental carbon (EC) and black carbon (BC) measurements with a thermal method and an aethalometer at the high-alpine research station Jungfraujoch. Atmos Environ 1999: 33: 2759–2769.

    Article  CAS  Google Scholar 

  • Linak W.P., and Miller C.A . Comparison of particle size distributions and elemental partitioning from the combustion of pulverized coal and residual fuel oil. J Air Waste Manage Assoc 2000: 50: 1532–1544.

    Article  CAS  Google Scholar 

  • Lloyd A.C., and Cackette T.A . Diesel engines: environmental impact and control. J Air Waste Manage Assoc 2001: 51: 809–847.

    Article  CAS  Google Scholar 

  • Lowenthal D.H., Zielinska B., Chow J.C., Watson J.G., Gautam M., Ferguson D.H., Neuroth G.R., and Stevens K.D . Characterization of heavy-duty diesel vehicle emissions. Atmos Environ 1994: 28: 731–743.

    Article  CAS  Google Scholar 

  • Magliano K.L., Hughes V.M., Chinkin L.R., Coe D.L., Haste T.L., Kumar N., and Lurmann F.W . Spatial and temporal variations in PM10 and PM2.5 source contributions and comparison to emissions during the 1995 integrated monitoring study. Atmos Environ 1999: 33: 4757–4773.

    Article  CAS  Google Scholar 

  • McDonald R.D., Zielinska B., Fujita E.M., Sagebiel J.C., Chow J.C., and Watson J.G . Fine particle and gaseous emission rates from residential wood combustion. Environ Sci Technol 2000: 34: 2080–2091.

    Article  CAS  Google Scholar 

  • Moosmuller H., Arnott W.P., Rogers C.F., Bowen J.L., Gillies J.A., Pierson W.R., Collins J.F., Durbin T.D., and Norbeck J.M . Time-resolved characterization of diesel particulate emissions. 2. Instruments for elemental and organic carbon measurements. Environ Sci Technol 2001: 35: 1935–1942.

    Article  CAS  Google Scholar 

  • NIOSH. Elemental carbon (diesel particulate): Method 5040. In: Eller P.M., Cassinelli M.E., (Eds.). NIOSH Manual of Analytical Methods, 4th ed. (1st Suppl). National Institute for Occupational Safety and Health, Cincinatti, 1996.

  • Noble C.A., and Prather K.A . Real-time measurement of correlated size and composition profiles of individual atmospheric aerosol particles. Environ Sci Technol 1996: 30: 2667–2680.

    Article  CAS  Google Scholar 

  • Novakov T. The role of soot and primary oxidants in atmospheric chemistry. Sci Total Environ 1984; 36(JUN): 1–10.

    Article  CAS  Google Scholar 

  • Park J.S., Schauer J.J., Shafer M.M., Chowdhury Z., Cass G.R., Wagner D., Sarofim A.F., and Lighty J.S . Analysis of source apportionment tracers in fine particulate matter emitted from the combustion of coal. Abstr Papers Am Chem Soc 2001: 222: 124–ENVR.

    Google Scholar 

  • Petzold A., Dopelheuer A., Brock C.A., and Schroder F . In situ observations and model calculations of black carbon emission by aircraft at cruise altitude. J Geophys Res — Atmos 1999: 104(D18): 22171–22181.

    Article  CAS  Google Scholar 

  • Prather K.A., Nordmeyer T., and Salt K . Real-time characterization of individual aerosol-particles using time-of-flight mass-spectrometry. Anal Chem 1994: 66: 1403–1407.

    Article  CAS  Google Scholar 

  • Pratsinis S., Novakov T., Ellis E.C., and Friedlander S.K . The carbon containing component of the Los-Angeles aerosol — source apportionment and contributions to the visibility budget. J Air Pollution Control Assoc 1984: 34: 643–650.

    Article  CAS  Google Scholar 

  • Ramadan Z., Song X.H., and Hopke P.K . Identification of sources of Phoenix aerosol by positive matrix factorization. J Air Waste Manage Assoc 2000: 50: 1308–1320.

    Article  CAS  Google Scholar 

  • Schauer J.J., and Cass G.R . Source apportionment of wintertime gas-phase and particle-phase air pollutants using organic compounds as tracers. Environ Sci Technol 2000: 34: 1821–1832.

    Article  CAS  Google Scholar 

  • Schauer J.J., Kleeman M.J., Cass G.R., and Simoneit B.R.T . Measurement of emissions from air pollution sources. 1. C-1 through C-29 organic compounds from meat charbroiling. Environ Sci Technol 1999a: 33: 1566–1577.

    Article  CAS  Google Scholar 

  • Schauer J.J., Kleeman M.J., Cass G.R., and Simoneit B.R.T . Measurement of emissions from air pollution sources. 2. C-1 through C-30 organic compounds from medium duty diesel trucks. Environ Sci Technol 1999b: 33: 1578–1587.

    Article  CAS  Google Scholar 

  • Schauer J.J., Kleeman M.J., Cass G.R., and Simoneit B.R.T . Measurement of emissions from air pollution sources. 3. C-1 through C-29 organic compounds from fireplace combustion of wood. Environ Sci Technol 2001: 35: 1716–1728.

    Article  CAS  Google Scholar 

  • Schauer J.J., Kleeman M.J., Cass G.R., and Simoneit B.R.C . Measurement of emissions from air pollution sources. 5. C-1 through C-32 organic compounds from gasoline-powered motor vehicles. Environ Sci Technol 2002: 36: 1169–1180.

    Article  CAS  Google Scholar 

  • Schauer J.J., Mader B.T., Deminter J.T., Heidemann G., Bae M.S., Seinfeld J.H., Flagan R.C., Cary R.A., Smith D., Huebert B.J., Bertram T., Howell S., Kline J.T., Quinn P., Bates T., Turpin B., Lim H.J., Yu J.Z., Yang H., Keywood M.D. ACE-Asia intercomparison of a thermal-optical method for the determination of particle-phase organic and elemental carbon. Environ Sci Technol 2003; 37(5): 993–1001.

    Article  CAS  Google Scholar 

  • Schauer J.J., Rogge W.F., Hildemann L.M., Mazurek M.A., and Cass G.R . Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos Environ 1996: 30: 3837–3855.

    Article  CAS  Google Scholar 

  • Schmid H., Laskus L., Abraham H.J., Baltensperger U., Lavanchy V., Bizjak M., Burba P., Cachier H., Crow D., Chow J., Gnauk T., Even A., ten Brink H.M., Giesen K.P., Hitzenberger R., Hueglin E., Maenhaut W., Pio C., Carvalho A., Putaud J.P., Toom-Sauntry D., and Puxbaum H. Results of the “carbon conference” international aerosol carbon round robin test stage I. Atmos Environ 2001; 35(12): 2111–2121.

    Article  CAS  Google Scholar 

  • Streets D.G., Gupta S., Waldhoff S.T., Wang M.Q., Bond T.C., and Bo Y.Y . Black carbon emissions in China. Atmos Environ 2001: 35: 4281–4296.

    Article  CAS  Google Scholar 

  • Turn S.Q., Jenkins B.M., Chow J.C., Pritchett L.C., Campbell D., Cahill T., and Whalen S.A . Elemental characterization of particulate matter emitted from biomass burning: wind tunnel derived source profiles for herbaceous and wood fuels. J Geophys Res — Atmos 1997: 102: 3683–3699.

    Article  CAS  Google Scholar 

  • Watson J.G., Fujita E.M., Chow J.C., Zielinska B., Richards L.W., Neff W.D., and Dietrich D . Northern Front Range Air Quality Study (NFRAQS) final report, Chapter 4. DRI, Reno, 1998.

  • Watson A.Y., and Valberg P.A. Carbon black and soot: two different substances. AIHAJ 2001; 62(2): 218–228.

  • Wolff G.T., Countess R.J., Groblicki P.J., Ferman M.A., Cadle S.H., and Muhlbaier J.L . Visibility-reducing species in the Denver “brown cloud” — II. Sources and temporal patterns. Atmos Environ 1981: 15: 2485–2502.

    Article  CAS  Google Scholar 

  • Yu J.Z., Xu J., and Yang H . Charring characteristics of atmospheric organic particulate matter in thermal analysis. Environ Sci Technol 2002: 36: 754–761.

    Article  CAS  Google Scholar 

  • Zheng M., Cass G.R., Schauer J.J., and Edgerton E.S . Source apportionment of PM2.5 in the southeastern United States using solvent-extractable organic compounds as tracers. Environ Sci Technol 2002: 36: 2361–2371.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This review paper was prepared under support from the Engine Manufacturers Association (Chicago, IL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J Schauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schauer, J. Evaluation of elemental carbon as a marker for diesel particulate matter. J Expo Sci Environ Epidemiol 13, 443–453 (2003). https://doi.org/10.1038/sj.jea.7500298

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jea.7500298

Keywords

This article is cited by

Search

Quick links