Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Metabolic responses to long-term pharmacological inhibition of CB1-receptor activity in mice in relation to dietary fat composition

Abstract

Background and objectives:

The antiobesity effects of suppressed endocannabinoid signaling may rely, at least in part, on changes in lipid fluxes. As fatty acids exert specific effects depending on their level of saturation, we hypothesized that the dietary fatty acid composition would influence the outcome of treatment with a CB1-receptor antagonist (rimonabant).

Methods:

Mice were treated with rimonabant (10 mg kg−1 body weight per day) or vehicle while equicalorically fed either a low-fat diet (LF), a high-fat (HF) diet or an HF diet in which 10% of the saturated fatty acids (SFAs) were replaced by poly-unsaturated fatty acids (PUFA) from fish oil (FO). Food intake and body weight were registered daily. Indirect calorimetry was performed and feces were collected. After 3 weeks, mice were killed for blood and tissue collection.

Results:

Relative to the LF diet, the HF diet caused anticipated metabolic derangements, which were partly reversed by the HF/FO diet. The HF/FO diet, however, was most obesity-promoting despite inhibiting lipogenesis as indicated by low gene expression levels of lipogenic enzymes. On all three diets, rimonabant treatment improved metabolic derangements and led to significantly lower body weight gain than their respective controls. This latter effect appeared largest in the HF/FO group, but occurred without major changes in nutrient absorption and energy expenditure.

Conclusion:

The effects of chronic rimonabant treatment on body weight gain occurred irrespective of diet-induced changes in lipogenic activity, food intake and daily energy expenditure, and were, in fact, most pronounced in HF/FO mice. The effects of dietary PUFA replacement in an HF diet on expansion of adipose tissue might allow the favorable effects of dietary PUFA on dyslipidemia and hepatic steatosis. In light of other disadvantageous effects of weight gain, this might be a risky trade-off.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Di Marzo V, Matias I . Endocannabinoid control of food intake and energy balance. Nat Neurosci 2005; 8: 585–589.

    Article  CAS  PubMed  Google Scholar 

  2. Bellocchio L, Cervino C, Pasquali R, Pagotto U . The endocannabinoid system and energy metabolism. J Neuroendocrinol 2008; 20: 850–857.

    Article  CAS  PubMed  Google Scholar 

  3. Matias I, Di Marzo V . Endocannabinoids and the control of energy balance. Trends Endocrinol Metab 2007; 18: 27–37.

    Article  CAS  PubMed  Google Scholar 

  4. Williams CM, Kirkham TC . Anandamide induces overeating: mediation by central cannabinoid (CB1) receptors. Psychopharmacology (Berl) 1999; 143: 315–317.

    Article  CAS  Google Scholar 

  5. Hao S, Avraham Y, Mechoulam R, Berry EM . Low dose anandamide affects food intake, cognitive function, neurotransmitter and corticosterone levels in diet-restricted mice. Eur J Pharmacol 2000; 392: 147–156.

    Article  CAS  PubMed  Google Scholar 

  6. Kirkham TC, Williams CM, Fezza F, Di Marzo V . Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br J Pharmacol 2002; 136: 550–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Di Marzo V, Goparaju SK, Wang L, Liu J, Batkai S, Jarai Z et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 2001; 410: 822–825.

    Article  CAS  PubMed  Google Scholar 

  8. Zimmer A, Zimmer AM, Hohmann AG, Herkenham M, Bonner TI . Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc Natl Acad Sci USA 1999; 96: 5780–5785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ravinet Trillou C, Delgorge C, Menet C, Arnone M, Soubrie P . CB1 cannabinoid receptor knockout in mice leads to leanness, resistance to diet-induced obesity and enhanced leptin sensitivity. Int J Obes Relat Metab Disord 2004; 28: 640–648.

    Article  CAS  PubMed  Google Scholar 

  10. Cota D, Marsicano G, Tschop M, Grubler Y, Flachskamm C, Schubert M et al. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest 2003; 112: 423–431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Osei-Hyiaman D, DePetrillo M, Pacher P, Liu J, Radaeva S, Batkai S et al. Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J Clin Invest 2005; 115: 1298–1305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Despres JP, Golay A, Sjostrom L . Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 2005; 353: 2121–2134.

    Article  CAS  PubMed  Google Scholar 

  13. Van Gaal LF, Rissanen AM, Scheen AJ, Ziegler O, Rossner S . Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 2005; 365: 1389–1397.

    Article  CAS  PubMed  Google Scholar 

  14. Hildebrandt AL, Kelly-Sullivan DM, Black SC . Antiobesity effects of chronic cannabinoid CB1 receptor antagonist treatment in diet-induced obese mice. Eur J Pharmacol 2003; 462: 125–132.

    Article  CAS  PubMed  Google Scholar 

  15. Ravinet Trillou C, Arnone M, Delgorge C, Gonalons N, Keane P, Maffrand JP et al. Anti-obesity effect of SR141716, a CB1 receptor antagonist, in diet-induced obese mice. Am J Physiol Regul Integr Comp Physiol 2003; 284: R345–R353.

    Article  PubMed  Google Scholar 

  16. Colombo G, Agabio R, Diaz G, Lobina C, Reali R, Gessa GL . Appetite suppression and weight loss after the cannabinoid antagonist SR 141716. Life Sci 1998; 63: L113–L117.

    Article  Google Scholar 

  17. Matias I, Gonthier MP, Orlando P, Martiadis V, De Petrocellis L, Cervino C et al. Regulation, function, and dysregulation of endocannabinoids in models of adipose and beta-pancreatic cells and in obesity and hyperglycemia. J Clin Endocrinol Metab 2006; 91: 3171–3180.

    Article  CAS  PubMed  Google Scholar 

  18. Jbilo O, Ravinet-Trillou C, Arnone M, Buisson I, Bribes E, Peleraux A et al. The CB1 receptor antagonist rimonabant reverses the diet-induced obesity phenotype through the regulation of lipolysis and energy balance. FASEB J 2005; 19: 1567–1569.

    Article  CAS  PubMed  Google Scholar 

  19. Herling AW, Kilp S, Elvert R, Haschke G, Kramer W . Increased energy expenditure contributes more to the body weight-reducing effect of rimonabant than reduced food intake in candy-fed Wistar rats. Endocrinology 2008; 149: 2557–2566.

    Article  CAS  PubMed  Google Scholar 

  20. Osei-Hyiaman D, Liu J, Zhou L, Godlewski G, Harvey-White J, Jeong WI et al. Hepatic CB1 receptor is required for development of diet-induced steatosis, dyslipidemia, and insulin and leptin resistance in mice. J Clin Invest 2008; 118: 3160–3169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Poirier B, Bidouard JP, Cadrouvele C, Marniquet X, Staels B, O’Connor SE et al. The anti-obesity effect of rimonabant is associated with an improved serum lipid profile. Diabetes Obes Metab 2005; 7: 65–72.

    Article  CAS  PubMed  Google Scholar 

  22. Pellizzon M, Buison A, Ordiz Jr F, Santa AL, Jen KL . Effects of dietary fatty acids and exercise on body-weight regulation and metabolism in rats. Obes Res 2002; 10: 947–955.

    Article  CAS  PubMed  Google Scholar 

  23. Lin J, Yang R, Tarr PT, Wu PH, Handschin C, Li S et al. Hyperlipidemic effects of dietary saturated fats mediated through PGC-1beta coactivation of SREBP. Cell 2005; 120: 261–273.

    Article  CAS  PubMed  Google Scholar 

  24. Benhizia F, Hainault I, Serougne C, Lagrange D, Hajduch E, Guichard C et al. Effects of a fish oil-lard diet on rat plasma lipoproteins, liver FAS, and lipolytic enzymes. Am J Physiol 1994; 267: E975–E982.

    CAS  PubMed  Google Scholar 

  25. Dentin R, Benhamed F, Pegorier JP, Foufelle F, Viollet B, Vaulont S et al. Polyunsaturated fatty acids suppress glycolytic and lipogenic genes through the inhibition of ChREBP nuclear protein translocation. J Clin Invest 2005; 115: 2843–2854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jequier E, Acheson K, Schutz Y . Assessment of energy expenditure and fuel utilization in man. Annu Rev Nutr 1987; 7: 187–208.

    Article  CAS  PubMed  Google Scholar 

  27. Lusk G . The Elements of the Science of Nutrition. 4th edn. Johnson Reprint Corp.: New York, 1924.

    Google Scholar 

  28. Bligh EG, Dyer WJ . A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37: 911–917.

    Article  CAS  PubMed  Google Scholar 

  29. Böttcher CFJ, van Gent CM, Pries C . A rapid and sensitive sub-micro phosphorus determination. Anal Chim Acta 1961; 24: 203–204.

    Article  Google Scholar 

  30. den Boer M, Voshol PJ, Kuipers F, Havekes LM, Romijn JA . Hepatic steatosis: a mediator of the metabolic syndrome. Lessons from animal models. Arterioscler Thromb Vasc Biol 2004; 24: 644–649.

    Article  CAS  PubMed  Google Scholar 

  31. Haffner SM . The prediabetic problem: development of non-insulin-dependent diabetes mellitus and related abnormalities. J Diabetes Complications 1997; 11: 69–76.

    Article  CAS  PubMed  Google Scholar 

  32. Kotronen A, Juurinen L, Tiikkainen M, Vehkavaara S, Yki-Jarvinen H . Increased liver fat, impaired insulin clearance, and hepatic and adipose tissue insulin resistance in type 2 diabetes. Gastroenterology 2008; 135: 122–130.

    Article  CAS  PubMed  Google Scholar 

  33. Clarke SD . Polyunsaturated fatty acid regulation of gene transcription: a molecular mechanism to improve the metabolic syndrome. J Nutr 2001; 131: 1129–1132.

    Article  CAS  PubMed  Google Scholar 

  34. Kim JY, van de Wall E, Laplante M, Azzara A, Trujillo ME, Hofmann SM et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest 2007; 117: 2621–2637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lebovitz HE . The relationship of obesity to the metabolic syndrome. Int J Clin Pract Suppl 2003; 134: 18–27.

    CAS  Google Scholar 

  36. Woolcott OO, Stefanovski D, Harrison LN, Mooradian V, Zheng D, Lottati M et al. Rimonabant reduces body weight and adiposity independent of changes in resting metabolic rate and food intake. Diabetologia 2008; 51 (Suppl 1): S316 (abstract).

    Google Scholar 

  37. Kunz I, Meier MK, Bourson A, Fisseha M, Schilling W . Effects of rimonabant, a cannabinoid CB1 receptor ligand, on energy expenditure in lean rats. Int J Obes (Lond) 2008; 32: 863–870.

    Article  CAS  Google Scholar 

  38. Herling AW, Gossel M, Haschke G, Stengelin S, Kuhlmann J, Muller G et al. CB1 receptor antagonist AVE1625 affects primarily metabolic parameters independently of reduced food intake in Wistar rats. Am J Physiol Endocrinol Metab 2007; 293: E826–E832.

    Article  CAS  PubMed  Google Scholar 

  39. Addy C, Wright H, Van Laere K, Gantz I, Erondu N, Musser BJ et al. The acyclic CB1R inverse agonist taranabant mediates weight loss by increasing energy expenditure and decreasing caloric intake. Cell Metab 2008; 7: 68–78.

    Article  CAS  PubMed  Google Scholar 

  40. Starowicz KM, Cristino L, Matias I, Capasso R, Racioppi A, Izzo AA et al. Endocannabinoid dysregulation in the pancreas and adipose tissue of mice fed with a high-fat diet. Obesity (Silver Spring) 2008; 16: 553–565.

    Article  CAS  Google Scholar 

  41. D’Eon TM, Pierce KA, Roix JJ, Tyler A, Chen H, Teixeira SR . The role of adipocyte insulin resistance in the pathogenesis of obesity-related elevations in endocannabinoids. Diabetes 2008; 57: 1262–1268.

    Article  PubMed  Google Scholar 

  42. Pagano C, Pilon C, Calcagno A, Urbanet R, Rossato M, Milan G et al. The endogenous cannabinoid system stimulates glucose uptake in human fat cells via phosphatidylinositol 3-kinase and calcium-dependent mechanisms. J Clin Endocrinol Metab 2007; 92: 4810–4819.

    Article  CAS  PubMed  Google Scholar 

  43. Matias I, Petrosino S, Racioppi A, Capasso R, Izzo AA, Di Marzo V . Dysregulation of peripheral endocannabinoid levels in hyperglycemia and obesity: effect of high fat diets. Mol Cell Endocrinol 2008; 286: S66–S78.

    Article  CAS  PubMed  Google Scholar 

  44. Berger A, Crozier G, Bisogno T, Cavaliere P, Innis S, Di Marzo V . Anandamide and diet: inclusion of dietary arachidonate and docosahexaenoate leads to increased brain levels of the corresponding N-acylethanolamines in piglets. Proc Natl Acad Sci USA 2001; 98: 6402–6406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Watanabe S, Doshi M, Hamazaki T . n-3 Polyunsaturated fatty acid (PUFA) deficiency elevates and n-3 PUFA enrichment reduces brain 2-arachidonoylglycerol level in mice. Prostaglandins Leukot Essent Fatty Acids 2003; 69: 51–59.

    Article  CAS  PubMed  Google Scholar 

  46. Batetta B, Griinari M, Carta G, Murru E, Ligestri A, Cordeddu L et al. Endocannabinoids may mediate the ability of (n-3) fatty acids to reduce ectopic fat and inflammatory mediators in obese Zucker rats. J Nutr 2009; 139: 1495–1501.

    Article  CAS  PubMed  Google Scholar 

  47. Matias I, Carta G, Murru E, Petrosino S, Banni S, Di Marzo V . Effect of polyunsaturated fatty acids on endocannabinoid and N-acyl-ethanolamine levels in mouse adipocytes. Biochim Biophys Acta 2008; 1781: 52–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Solvay for providing rimonabant. This study was financially supported by a grant from Kruidvat and UMCG to the Groningen Expert Centre on Childhood Obesity (to PJJS) and from the Dutch Diabetes Foundation (to GvD). We thank Mark Doornbos for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G van Dijk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koolman, A., Bloks, V., Oosterveer, M. et al. Metabolic responses to long-term pharmacological inhibition of CB1-receptor activity in mice in relation to dietary fat composition. Int J Obes 34, 374–384 (2010). https://doi.org/10.1038/ijo.2009.219

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2009.219

Keywords

This article is cited by

Search

Quick links