Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Hormone sensitive lipase expression and adipose tissue metabolism show gender difference in obese subjects after weight loss

Abstract

OBJECTIVE: The effect of weight reduction on hormone sensitive lipase (HSL) and lipoprotein lipase (LPL) gene expression and their relationship with adipose tissue metabolism were studied in massively obese men and women.

SUBJECTS: Seventeen obese subjects (eight men, nine women) participated in the study (age 44±2 y, weight 145±8 kg, fat 40±2% of body mass, mean±s.e.m.), who were going through a gastric-banding operation for weight reduction.

MEASUREMENTS: HSL and LPL mRNA expressions were analyzed using the reverse transcription competitive polymerase chain reaction. Subcutaneous fat lipolysis was measured in vivo by microdialysis and in vitro in isolated subcutaneous abdominal adipocytes. Measurements were done before and after 1 y of weight reduction.

RESULTS: Significant reductions in weight (for men −20.3±2.5%, for women −18.3±2.1% (mean±s.e.m.) and fat mass (for men −27.6±7.9%, for women −21.8±3.9%) were observed in both genders. In women HSL mRNA expression decreased by 31% (P=0.008) and LPL expression increased slightly, but nonsignificantly (42%, P=0.110). These changes were not observed in men. In men, inhibition of lipolysis with α2-adrenergic and adenosine agonist was improved (P=0.001) in isolated adipocytes.

CONCLUSIONS: This study uncovers new differences between genders in adipocyte metabolism along with weight reduction. In women, the observed changes in HSL and LPL gene expression suggest that deposition of lipids into adipose tissue might be favored after weight reduction. In men, the results indicate improved responsiveness to inhibition in adipose tissue metabolism along with weight reduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Frayn KN, Coppack SW, Fielding BA, Humphreys SM . Coordinated regulation of hormone sensitive lipase and lipoprotein lipase in human adipose tissue in vivo: implications for the control of fat storage and fat mobilization Adv Enzyme Regul 1995 35: 163–178.

    Article  CAS  Google Scholar 

  2. Jéquier E, Tappy L . Regulation of body weight in humans Physiol Rev 1999 79: 451–480.

    Article  Google Scholar 

  3. Kern PA . Potential role of TNFα and lipoprotein lipase as candidate genes for obesity J Nutr 1997 127: 1917S–1922S.

    Article  CAS  Google Scholar 

  4. Large V, Arner P . Regulation of lipolysis in humans. Pathophysiology modulation in obesity, diabetes and hyperlipidemia Diabetes Metab 1998 24: 409–418.

    CAS  PubMed  Google Scholar 

  5. Large V, Reynisdottir S, Langin D, Fredby K, Klannemark M, Holm C, Arner P . Decreased expression and function of adipocyte hormone sensitive lipase in subcutaneous fat cells of obese subjects J Lipid Res 1999 40: 2059–2065.

    CAS  PubMed  Google Scholar 

  6. Berman DM, Rogus EM, Busby-Whitehead J, Katzel LI, Goldberg AP . Predictors of adipose tissue lipoprotein lipase in middle-aged and older men: relationship to leptin and obesity, but not cardiovascular fitness Metabolism 1999 48: 183–189.

    Article  CAS  Google Scholar 

  7. Eckel RH . Lipoprotein lipase. A multifunctional enzyme relevant to common metabolic disease New Engl J Med 1989 320: 1060–1068.

    Article  CAS  Google Scholar 

  8. Coppack SW, Evans RD, Fisher RM, Frayn KN, Gibbons GF, Humphreys SM, Kirk ML, Potts JL, Hockaday TD . Adipose tissue metabolism in obesity: lipase action in vivo before and after a mixed meal Metabolism 1992 41: 264–272.

    Article  CAS  Google Scholar 

  9. Reynisdottir S, Angelin B, Langin D, Lithell H, Eriksson M, Holm C, Arner P . Adipose tissue lipoprotein lipase and hormone sensitive lipase. Contrasting findings in familial combined hyperlipidemia and insulin resistance syndrome Arterioscler Thromb Vasc Biol 1997 17: 2287–2292.

    Article  CAS  Google Scholar 

  10. Kern PA, Ong JM, Saffari B, Carty J . The effects of weight loss on the activity and expression of adipose tissue lipoprotein lipase in very obese human New Engl J Med 1990 322: 1053–1059.

    Article  CAS  Google Scholar 

  11. Schwartz RS, Brunzell JD . Increase of adipose tissue lipoprotein lipase activity with weight loss J Clin Invest 1981 67: 1425–1430.

    Article  CAS  Google Scholar 

  12. Imbeault P, Almeras N, Richard D, Despres JP, Tremblay A, Mauriége P . Effect of moderate weight loss on adipose tissue lipoprotein lipase activity and expression: existence of sexual variation and regional difference Int J Obes Relat Metab Disord 1999 23: 957–965.

    Article  CAS  Google Scholar 

  13. Connacher AA, Bennett WM, Jung RT, Bier DM, Smith CCT, Scrimgeour CM, Rennie MJ . Effect of adrenaline infusion on fatty acid and glucose turnover in lean and obese human subjects in the postabsorptive and fed-states Clin Sci (Colch) 1991 81: 635–644.

    Article  CAS  Google Scholar 

  14. Kaartinen JM, LaNoue KF, Martin LF, Vikman HL, Ohisalo JJ . β-Adrenergic responsiveness of adenylate cyclase in human adipocyte plasma membranes in obesity and after massive weight reduction Metabolism 1995 44: 1288–1292.

    Article  CAS  Google Scholar 

  15. Reynisdottir S, Ellerfeldt K, Wahrenberg H, Lithell H, Arner P . Multiple lipolysis defects in the insulin resistance (metabolic) syndrome J Clin Invest 1994 93: 2590–2599.

    Article  CAS  Google Scholar 

  16. Hellström L, Langin D, Reynisdottir S, Dauzats M, Arner P . Adipocytes lipolysis in normal weight subjects with obesity among first degree relatives Diabetologia 1996 39: 921–928.

    Article  Google Scholar 

  17. Arner P . Control of lipolysis and its relevance to development of obesity in man Diabetes Metab Rev 1988 4: 507–515.

    Article  CAS  Google Scholar 

  18. Björntorp P, Sjöström L . The composition and metabolism in vitro of adipose tissue fat cells of different size Eur J Clin Invest 1972 2: 78–84.

    Article  Google Scholar 

  19. Frayn KN, Humphreys SM, Coppack SW . Net carbon flux across subcutaneous adipose tissue after a standard meal in normal-weight and insulin-resistant obese subjects Int J Obes Relat Metab Disord 1996 20: 795–800.

    CAS  PubMed  Google Scholar 

  20. Mauriège P, Després JP, Prud'homme D, Pouliot MC, Marcotte M, Tremblay A, Bouchard C . Regional variation in adipose tissue lipolysis in lean and obese men J Lipid Res 1991 32: 1625–1633.

    PubMed  Google Scholar 

  21. Reynisdottir S, Wahrenberg H, Carlström K, Rössner S, Arner P . Cathecholamine resistance in fat cells of women with upper-body obesity due to decreased expression of β2-adrenoceptors Diabetologia 1994 37: 428–435.

    Article  CAS  Google Scholar 

  22. Hellström L, Reynisdottir S, Langin D, Rössner S, Arner P . Regulation of lipolysis in fat cells of obese women during long-term hypocaloric diet Int J Obes Relat Metab Disord 1996 20: 745–752.

    PubMed  Google Scholar 

  23. Reynisdottir S, Langin D, Carlström K, Holm C, Rössner S, Arner P . Effect of weight reduction on the regulation of lipolysis in adipocytes of women with upper-body obesity Clin Sci 1995 89: 421–429.

    Article  CAS  Google Scholar 

  24. Stich V, Harant I, de Glisezinski, Crampes F, Berlan M, Kunesova M, Hainer V, Dauzats M, Riviere D, Garrigues M, Holm C, Lafontan M, Langin D . Adipose tissue lipolysis and hormone sensitive lipase expression during very low calory diet in obese female identical twins J Clin Endocrinol Metab 1997 82: 739–744.

    CAS  PubMed  Google Scholar 

  25. Pedersen SB, Jonler M, Richelsen B . Characterization of regional and gender differences in glucocorticoid receptors and lipoprotein lipase activity in human adipose tissue J Clin Endocrinol Metab 1994 78: 1354–1359.

    CAS  PubMed  Google Scholar 

  26. Fried SK, Russell CD, Grauso NL, Brolin RE . Lipoprotein lipase regulation by insulin and glucocorticoid in subcutaneous and omental adipose tissues of obese women and men J Clin Invest 1993 92: 2191–2198.

    Article  CAS  Google Scholar 

  27. Romanski SA, Nelson RM, Jensen MD . Meal fatty acid uptake in adipose tissue: gender effects in nonobese humans Am J Physiol Endocrinol Metab 2000 279: E455–E462.

    Article  CAS  Google Scholar 

  28. Arner P . Catecholamine-induced lipolysis in obesity Int J Obes Relat Metab Disord 1999 23(Suppl): 10–13.

    Article  Google Scholar 

  29. Jensen MD . Lipolysis: contribution from regional fat A Rev Nutr 1997 17: 127–139.

    Article  CAS  Google Scholar 

  30. Hellström L, Blaak E, Hagström-Toft E . Gender difference in adrenergic regulation of lipid mobilization during exercise Int J Sports Med 1996 17: 439–447.

    Article  Google Scholar 

  31. Leibel RL, Hirch J . Site- and sex-related differences in adrenoreceptor status of human adipose tissue J Clin Endocrinol Metab 1987 64: 1205–1210.

    Article  CAS  Google Scholar 

  32. Mauriège P, Imbeault P, Langin D, Lacaille M, Almeras N, Tremblay A, Després JP . Regional and gender variations in adipose tissue lipolysis in response to weight loss J Lipid Res 1999 40: 1559–1571.

    PubMed  Google Scholar 

  33. Wirth A, Steinmetz B . Gender differences in changes in subcutaneous and intra-abdominal fat during weight reduction: an ultrasound study Obes Res 1998 6: 393–399.

    Article  CAS  Google Scholar 

  34. Large V, Reynisdottir S, Eleborg I, van Harmelen V, Strommer L, Arner P . Lipolysis in human fat cells obtained under local or general anesthesia Int J Obes Relat Metab Disord 1997 21: 78–82.

    Article  CAS  Google Scholar 

  35. Arner P, Kriegholm E, Engefeldt P . In situ studies of catecholamines-induced lipolysis in human adipose tissue using microdialysis J Pharm Exp Ther 1990 254: 284–288.

    CAS  Google Scholar 

  36. LaFontan M, Arner P . Application of in situ microdialysis to measure metabolic and vasculoar responses in adipose tissue Trends Pharmac Sci 1996 17: 309–313.

    Article  CAS  Google Scholar 

  37. Kolehmainen M, Ohisalo JJ, Kaartinen JM, Tuononen V, Pääkkönen M, Poikolainen E, Alhava E, Uusitupa MIJ . Concordance on in vivo microdialysis and in vitro techniques in the studies of adipose tissue metabolism Int J Obes Relat Metab Disord 2000 24: 1426–1432.

    Article  CAS  Google Scholar 

  38. Hickner RC, Rosdahl H, Borg I, Ungestedt U, Jorfeldt L, Henricksson J . Ethanol may be used with the microdialysis technique to monitor local blood flow changes in skeletal muscle: dialysate glucose concentration is blood-flow-dependent Acta Physiol Scand 1991 143: 355–356.

    Article  CAS  Google Scholar 

  39. Kather H, Wieland E . Glycerol, luminometric method. In: Bergmeyer HU (ed.) Methods of enzymatic analysis Vol 6: Verlag Chemie: Wernheim 1984 510–519.

    Google Scholar 

  40. Ohisalo JJ, Kaartinen JM, Ranta S, Mustajoki P, Hreniuk SP, LaNoue KF, Martin LF . Weight loss normalizes the inhibitory effect of N6-(phenylisopropyl)-adenosine on lipolysis in fat cells of massively obese subjects Clin Sci 1992 83: 589–592.

    Article  CAS  Google Scholar 

  41. Rodbell M . Metabolism of isolated fat cells J Biol Chem 1964 239: 375–380.

    CAS  PubMed  Google Scholar 

  42. Schwabe U, Schönhofer PS, Ebert R . Facilitation by adenosine of the action of insulin on the accumulation of adenosine 3-5-monophosphate, lipolysis, and glucose oxidation in isolated fat cells Eur J Biochem 1973 46: 537–545.

    Article  Google Scholar 

  43. Östman J, Arner P, Kimura H, Wahrenberg H, Engefeldt P . Influence of fasting on lipolytic response to adrenergic agonists and on adrenergic receptors in subcutaneous adipocytes Eur J Clin Invest 1984 14: 383–391.

    Article  Google Scholar 

  44. Auboeuf D, Vidal H . The use of the reverse transcriptase-competitive polymerase chain reaction to investigate the in vivo regulation of gene expression in small tissue samples Ann Biochem 1997 245: 141–148.

    Article  CAS  Google Scholar 

  45. Laville M, Auboeuf D, Khalfallah Y, Vega N, Riou JP, Vidal H . Acute regulation by insulin of phosphatidylinositol-3-kinase, Rad, Glut 4 and lipoprotein lipase mRNA levels in human muscle J Clin Invest 1996 98: 43–49.

    Article  CAS  Google Scholar 

  46. Lönnqvist F, Thörne A, Large V, Arner P . Sex differences in visceral fat lipolysis and metabolic complications of obesity Arterioscler Thromb Vasc Biol 1997 17: 472–1480.

    Article  Google Scholar 

  47. Large V, Arner P, Reynisdottir S, Grober J, van Harmelen V, Holm C, Langin D . Hormone sensitive lipase expression and activity in relation to lipolysis in human fat cells J Lipid Res 1998 39: 1688–1695.

    CAS  PubMed  Google Scholar 

  48. Berger JJ, Barnard RJ . Effect of diet on fat cell size and hormone sensitive lipase activity J Appl Physiol 1999 87: 227–232.

    Article  CAS  Google Scholar 

  49. Reynisdottir S, Dauzats M, Thörne A, Langin D . Comparison of hormone sensitive lipase activity in visceral and subcutaneous human adipose tissue J Clin Endocrinol Metab 1997 82: 4162–4166.

    CAS  PubMed  Google Scholar 

  50. Arner P . Regulation of lipolysis in fat cells Diabetes Rev 1996 4: 450–463.

    Google Scholar 

  51. Horowitz JS, Klein S . Whole body abdominal lipolytic sensitivity to epinephrine is suppressed in upper body obese women Am J Physiol Endocrinol Metab 1996 4: 450–463.

    Google Scholar 

  52. Kaartinen JM, Hreniuk S, Martin LF, Ranta S, LaNoue KF, Ohisalo JJ . Attenuated adenosine-sensitivity and decreased adenosine-receptor number in adipocyte plasma membranes in human obesity Biochem J 1991 279: 17–22.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from Academy of Finland, Research Council for Health, Jenny and Antti Wihuri Foundation, Finland, Finnish Cultural Foundation of Northern Savo, Hoffman La Roche Ltd, Basel, Switzerland and EVO fund by Kuopio University Hospital. The authors also thank Mrs Paulette Vallier, Ms Teija Inkinen, Ms Erja Kinnunen, Mrs Kaija Kettunen, Ms Irja Lyytikäinen, Mrs Eeva Hakulinen and Mrs Sirkku Malila for skillful technical assistance and the nursing staff of the Operational Unit 1 and Surgical Ward 2205 of Kuopio University Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Kolehmainen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolehmainen, M., Vidal, H., Ohisalo, J. et al. Hormone sensitive lipase expression and adipose tissue metabolism show gender difference in obese subjects after weight loss. Int J Obes 26, 6–16 (2002). https://doi.org/10.1038/sj.ijo.0801858

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0801858

Keywords

This article is cited by

Search

Quick links