Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Potential differentiation of human mesenchymal stem cell transplanted in rat corpus cavernosum toward endothelial or smooth muscle cells

Abstract

One of the causes of erectile dysfunction (ED) is the damaged penile cavernous smooth muscle cells (SMCs) and sinus endothelial cells (ECs). To investigate the feasibility of applying immortalized human mesenchymal stem cells (MSCs) to penile cavernous ECs or SMCs repair in the treatment of ED, the in vivo potential differentiation of the immortalized human MSCs toward penile cavernous endothelial or smooth muscle was investigated. One clone of immortalized human bone marrow mesenchymal stem cell line B10 cells via retroviral vector encoding v-myc were transplanted into the cavernosum of the Sprague–Dawley rats and harvested 2 weeks later. The expression of CD31, von Willebrand factor (vWF), smooth muscle cell actin (SMA), calponin and desmin was determined immunohistochemically in rat penile cavernosum. Multipotency of B10 to adipogenic, osteogenic or chondrogenic differentiation was found. Expression of EC specific markers (CD31 or vWF protein) and expression of SMC specific markers (calponin, SMA or desmin protein) were demonstrated in grafted B10 cells. When human MSCs were transplanted into the penile cavernosum, they have the potential to differentiate toward ECs or SMCs. Human MSCs may be a good candidate in the treatment of penile cavernosum injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Miralles-Garcia JM, Garcia-Diez LC . Specific aspects of erectile dysfunction in endocrinology. Int J Impot Res 2004; 16: S10–S12.

    Article  PubMed  Google Scholar 

  2. Sainz I, Amaya J, Garcia M . Erectile dysfunction in heart disease patients. Int J Impot Res 2004; 16: S13–S17.

    Article  PubMed  Google Scholar 

  3. Liechty KW, MacKenzie TC, Shaaban AF, Radu A, Mosley AM, Deans R et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 2000; 6: 1282–1286.

    Article  CAS  PubMed  Google Scholar 

  4. Deng J, Petersen B, Steindler DA, Jorgensen ML, Latwell ED . Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells 2006; 24: 1054–1064.

    Article  CAS  PubMed  Google Scholar 

  5. Silva GV, Litovsky S, Assad JA, Sousa AL, Martin BJ, Vela D et al. Messenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia medel. Circulation 2005; 111: 150–156.

    Article  CAS  PubMed  Google Scholar 

  6. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.

    Article  CAS  PubMed  Google Scholar 

  7. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA 2000; 97: 3422–3427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410: 701–705.

    Article  CAS  PubMed  Google Scholar 

  9. Bang OY, Lee JS, Lee PH, Lee G . Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 2005; 57: 874–882.

    Article  PubMed  Google Scholar 

  10. Yang J, Zhou W, Zheng W, Ma Y, Lin L, Tang T et al. Effects of myocardial transplantation of marrow mesenchymal stem cells transfected with vascular endothelial growth factor for the improvement of heart function and angiogenesis after muocardial infarction. Cardiology 2006; 107: 17–29.

    Article  PubMed  Google Scholar 

  11. Verfailie CM . Adult stem cells: assessing the case for pluripotency. Trends Cell Biol 2002; 12: 502–508.

    Article  Google Scholar 

  12. Rafii S, Lyden D . Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 2003; 9: 702–712.

    Article  CAS  PubMed  Google Scholar 

  13. Kim SU, Stern J, Kim MW, Pleasure DE . Culture of purified rat astrocytes in serum-free medium supplemented with mitogen. Brain Res 1983; 274: 79–86.

    Article  CAS  PubMed  Google Scholar 

  14. Sun H, Wu C, Dai K, Chang J, Tang T . Proliferation and osteoblastic differentiation of human bone marrow-derived stromal cells on akermanite-bioactive ceramics. Biomaterials 2006; 27: 5651–5657.

    Article  CAS  PubMed  Google Scholar 

  15. Ciapetti G, Ambrosio L, Marletta G, Baldini N, Giunti A . Human bone marrow stromal cells: in vitro expansion and differentiation for bone engineering. Biomaterials 2006; 27: 6150–6160.

    Article  CAS  PubMed  Google Scholar 

  16. Carmeliet P, Moons L, Stassen JM, De Mol M, Bouche A, van den Oord JJ et al. Vascular wound healing and neointimal formation induced by perivascular electric injury in mice. Am J Pathol 1997; 150: 761–776.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Werner N, Priller J, Laufs U, Endres M, Bohm M, Dirnagl U et al. Bone-marrow derived progenitor cells modulate vascular reendothelization and neointimal formation: effect of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition. Arterioscler Thromb Vasc Biol 2002; 22: 1567–1572.

    Article  CAS  PubMed  Google Scholar 

  18. Hibbert B, Olsen S, O'Brien E . Involvement of progenitor cells in vascular repair. Trends Vasc Med 2003; 13: 322–326.

    CAS  Google Scholar 

  19. Werner N, Junk S, Laufs U, Link A, Walenta K, Bohm M et al. Intravenous transfusion of endothelial progenitor cells reduces neointimaformation after vascular injury. Circ Res 2003; 93: 17–24.

    Article  Google Scholar 

  20. Schmeisser A, Strasser RH . Phenotypic overlap between hematopoietic cells with suggested angioblastic potential and vascular endothelial cells. J Hematother Stem Cell Res 2002; 11: 69–70.

    Article  CAS  PubMed  Google Scholar 

  21. Pittenger MF, Martin BJ . Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 2004; 95: 9–20.

    Article  CAS  PubMed  Google Scholar 

  22. Tse WT, Pendelton JD, Beyer WM, Egalka MC, Guinan EC . Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 2003; 75: 389–397.

    Article  CAS  PubMed  Google Scholar 

  23. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99: 3838–3843.

    Article  CAS  PubMed  Google Scholar 

  24. Le Blanc K, Tammik L, Sundberg B, Haymesworth SE, Ringden O . Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 2003; 57: 11–20.

    Article  CAS  PubMed  Google Scholar 

  25. Wu X, Huang L, Zhou Q, Song Y, Li A, Jin J et al. Mesenchymal stem cells participating in ex vivo endothelium repair and its effect on vascular smooth muscle cells growth. Int J Cardiol 2005; 105: 274–282.

    Article  PubMed  Google Scholar 

  26. Oswald J, Boxberger S, Jorgensen B, Feldmann S, Ehninger G, Bornhauser M et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 2004; 22: 377–384.

    Article  PubMed  Google Scholar 

  27. Spees JL, Olson SD, Ylostalo J, Lynch PJ, Smith J, Perry A et al. Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proc Natl Acad Sci USA 2003; 100: 2397–2402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 2002; 416: 542–545.

    Article  CAS  PubMed  Google Scholar 

  29. Ying QL, Nichols J, Evans EP, Smith AG . Changing potency by spontaneous fusion. Nature 2002; 416: 545–548.

    Article  CAS  PubMed  Google Scholar 

  30. Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishkawa S, Yurugi T et al. Flk1-positive cells derived from embryonal stem cells serve as vascular progenitors. Nature 2000; 408: 92–96.

    Article  CAS  PubMed  Google Scholar 

  31. Devine SM, Bartholomew AM, Mahmud N, Nelson M, Patil S, Hardy W et al. Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol 2001; 29: 244–255.

    Article  CAS  PubMed  Google Scholar 

  32. Kotton DN, Ma BY, Cardoso WW, Sanderson EA, Summer RS, Williams MC et al. Bone marrow-derived cells as progenitors of lung alveolar epithelium. Development 2001; 128: 5181–5188.

    CAS  PubMed  Google Scholar 

  33. Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stomaiuolo A, Cossu G et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998; 279: 1528–1530.

    Article  CAS  PubMed  Google Scholar 

  34. Saito T, Kuang JQ, Bittira B, Al-Khaldi A, Chiu RC . Xenotransplant cardiac chimera: immune tolerance of adult stem cells. Ann Thorc Surg 2002; 74: 19–24.

    Article  Google Scholar 

  35. Hofstetter CP, Schwarz EJ, Hess D, Widenfalk J, El Manira A, Prockop DJ et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci USA 2002; 99: 2199–2204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li Y, Chen J, Wang L, Zhang L, Lu M, Chopp M . Intracerebral transplantation of bone marrow stromal cells in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Neurosci Lett 2001; 316: 67–70.

    Article  CAS  PubMed  Google Scholar 

  37. Alvarez-Donaldo M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hetatocytes. Nature 2003; 425: 968–973.

    Article  Google Scholar 

  38. Mezey E, Key S, Volgelsang G, Szalayova I, Lange GD, Crain B . Transplanted bone marrow generates new neurons in human brains. Proc Natl Acad Sci USA 2003; 100: 1364–1369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Deb A, Wang S, Skelding KA, Miller D, Simper D, Caplice ND . Bone marrow-derived cardiomyocytes are present in adult human heart: a study of gender-mismatched bone marrow transplantation patients. Circulation 2003; 107: 1247–1249.

    Article  PubMed  Google Scholar 

  40. Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 2002; 416: 542–545.

    Article  CAS  PubMed  Google Scholar 

  41. Ying QL, Nichols J, Evans EP, Smith AG . Changing potency by spontaneous fusion. Nature 2002; 416: 545–548.

    Article  CAS  PubMed  Google Scholar 

  42. Pells S, Di Domenico AI, Callagher EJ, McWhir J . Multipotentiality of neuronal cells after spontaneous fusion with embryonic stem cells and nuclear reprogramming in vitro. Cloning Stem Cells 2002; 4: 331–338.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J H Ku or S U Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Y., Lee, H., Park, I. et al. Potential differentiation of human mesenchymal stem cell transplanted in rat corpus cavernosum toward endothelial or smooth muscle cells. Int J Impot Res 19, 378–385 (2007). https://doi.org/10.1038/sj.ijir.3901539

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijir.3901539

Keywords

This article is cited by

Search

Quick links