Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Transient blocking of both B7.1 (CD80) and B7.2 (CD86) in addition to CD40–CD40L interaction fully abrogates the immune response following systemic injection of adenovirus vector

Abstract

Blockade of the CD40–CD40L and CD80/CD86–CD28 costimulatory pathways represents a strategy to inhibit the immune response against Ad vectors designed for gene therapy applications. Since most previous studies have used a CTLA4-Ig fusion molecule binding to both CD80 and CD86, the respective roles of these B7 molecules remained undefined. We have studied the effect of blocking monoclonal Abs (mAbs) directed against the costimulatory molecules CD40L, CD80 and CD86, alone or in different combinations, on the humoral and cellular immune responses against Ad. Groups of mice were transiently treated with each combination of blocking mAbs upon systemic injection of a first Ad vector. Combinations of anti-CD80 + anti-CD86 or anti-CD40L + anti-CD86 mAbs resulted in strong inhibition of the immune response against Ad. Using either of these mAb pairs, a second vector could be administered 1 month after the first injection but with lower efficiency than in naive animals. Thus, CD86 stands as the pivotal B7 molecule involved in the development of the immune response against Ad. However, only the blockade of both CD80 and CD86 in addition to CD40L fully inhibited the humoral and cellular responses against the Ad vector, such that readministration after 1 month was as efficient as in naive animals. At the time of readministration, treated animals had regained their ability to mount a normal immune response to the second Ad vector, showing that tolerance was not induced.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Yang Y, Lin Q, Ertl HCJ, Wilson JM . Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses J Virol 1995 69: 2004–2015

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Yang Y et al. Immune responses to viral antigens versus transgene product in the elimination of recombinant adenovirus-infected hepatocytes in vivo Gene Therapy 1996 3: 137–144

    PubMed  Google Scholar 

  3. Tripathy SK, Black HB, Goldwasser E, Leiden JM . Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors Nat Med 1996 2: 545–550

    Article  CAS  PubMed  Google Scholar 

  4. Michou A-I et al. Adenovirus-mediated gene transfer: influence of transgene, mouse strain and type of immune response on persistence of transgene expression Gene Therapy 1997 4: 473–482

    Article  CAS  PubMed  Google Scholar 

  5. Yang Y, Ertl HCJ, Wilson JM . MHC class I-restricted cytotoxic T lymphocytes to viral antigens destroy hepatocytes in mice infected with E1-deleted recombinant adenoviruses Immunity 1994 1: 433–442

    Article  CAS  PubMed  Google Scholar 

  6. Juillard V et al. Long-term humoral and cellular immunity induced by a single immunization with replication-defective adenovirus recombinant vector Eur J Virol 1995 25: 3467–3473

    CAS  Google Scholar 

  7. Van Ginkel FW et al. Intratracheal gene delivery with adenoviral vector induces elevated systemic IgG and mucosal IgA antibodies to adenovirus and beta-galactosidase Hum Gene Ther 1995 6: 895–903

    Article  CAS  PubMed  Google Scholar 

  8. Christ M et al. Gene therapy with recombinant adenovirus vectors: evaluation of the host immune response Immunol Lett 1997 57: 19–25

    Article  CAS  PubMed  Google Scholar 

  9. Gahéry-Ségard H et al. Humoral immune response to the capsid components of recombinant adenoviruses: routes of immunization modulate virus-induced Ig subclass shifts Eur J Immunol 1997 27: 653–659

    Article  PubMed  Google Scholar 

  10. Kolls JK et al. Use of transient CD4 lymphocyte depletion to prolong transgene expression of E1-deleted adenoviral vectors Hum Gene Ther 1996 7: 489–497

    Article  CAS  PubMed  Google Scholar 

  11. Chirmule N et al. Repeated administration of adenoviral vectors in lungs of human CD4 transgenic mice treated with a non-depleting CD4 antibody J Immunol 1999 163: 448–455

    CAS  PubMed  Google Scholar 

  12. Shean MK et al. Immunomodulation and adenoviral gene transfer to the lungs of nonhuman primates Hum Gene Ther 2000 11: 1047–1055

    Article  CAS  PubMed  Google Scholar 

  13. Grewal IS, Flavell RA . CD40 and CD154 in cell-mediated immunity Annu Rev Immunol 1998 16: 111–135

    Article  CAS  PubMed  Google Scholar 

  14. Lenschow DJ, Walunas TL, Bluestone JA . CD28/B7 system of T cell costimulation Annu Rev Immunol 1996 14: 233–258

    Article  CAS  PubMed  Google Scholar 

  15. Coyle AJ, Gutierrez-Ramos J-C . The expanding B7 superfamily: increasing complexity in costimulatory signals regulating T cell function Nature Immunol 2001 2: 203–209

    Article  CAS  Google Scholar 

  16. Powell JD, Ragheb JA, Kitagawa-Sakakida S, Schwartz R . Molecular regulation of interleukin-2 expression by CD28 co-stimulation and anergy Immunol Rev 1998 165: 287–300

    Article  CAS  PubMed  Google Scholar 

  17. Lu P, Wang YL, Linsley PS . Regulation of self-tolerance by CD80/CD86 interactions Curr Opin Immunol 1997 9: 858–862

    Article  CAS  PubMed  Google Scholar 

  18. Van Parijs L et al. Role of interleukin 12 and costimulators in T cell anergy in vivo J Exp Med 1997 186: 1119–1128

    Article  CAS  PubMed  Google Scholar 

  19. Van Gool SW . Blocking CD40–CD154 and CD80/CD86–CD28 interactions during primary allogeneic stimulation results in T cell anergy and high IL-10 production Eur J Immunol 1999 29: 2367–2375

    Article  CAS  PubMed  Google Scholar 

  20. Kearney ER et al. Antigen-dependent clonal expansion of a trace population of antigen-specific CD4+ T cells in vivo is dependent on CD28 costimulation and inhibited by CTLA4 J Immunol 1995 155: 1032–1036

    CAS  PubMed  Google Scholar 

  21. Walunas TL, Bakker CY, Bluestone JA . CTLA4 ligation blocks CD28-dependent T cell activation J Exp Med 1996 184: 2541–2550

    Article  Google Scholar 

  22. Perez VL et al. Induction of peripheral tolerance in vivo requires CTLA4 engagement Immunity 1997 6: 411–417

    Article  CAS  PubMed  Google Scholar 

  23. Thompson CB, Allison JP . The emerging role of CTLA4 as an immune attenuator Immunity 1997 7: 445–450

    Article  CAS  PubMed  Google Scholar 

  24. Fallarino F, Fields PE, Gajewski TF . B7-1 engagement of cytotoxic T lymphocyte antigen 4 inhibits T cell activation in the absence of CD28 J Exp Med 1998 188: 205–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Judge TA . The role of CD80, CD86 and CTLA4 in alloimmune responses and the induction of long-term allograft survival J Immunol 1999 162: 1947–1951

    CAS  PubMed  Google Scholar 

  26. Cella M et al. Ligation of CD40 on dendritic cells triggers production of high levels of IL-12 and enhances T cell stimulatory capacity: T-T help via APC activation J Exp Med 1996 1996: 184

    Google Scholar 

  27. Kay MA et al. Long-term hepatic adenovirus-mediated gene expression in mice following CTLA4Ig administration Nat Genet 1995 11: 191–197

    Article  CAS  PubMed  Google Scholar 

  28. Kay MA et al. Transient immunomodulation with anti-CD40 ligand antibody and CTLA4Ig enhances persistence and secondary adenovirus-mediated gene transfer into mouse liver Proc Natl Acad Sci USA 1997 94: 4686–4691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang Y et al. Transient subversion of CD40 ligand function diminishes immune response to adenovirus vectors in mouse liver and lung tissues J Virol 1996 70: 6370–6377

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Scaria A et al. Antibody to CD40L inhibits both humoral and cellular immune responses to adenoviral vectors and facilitates repeated administration to mouse airways Gene Therapy 1997 4: 611–617

    Article  CAS  PubMed  Google Scholar 

  31. Chirmule N et al. Readministration of adenovirus vector in nonhuman primate lungs by blockade of CD40–CD40 ligand interactions J Virol 2000 74: 3345–3352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Freeman GJ et al. B7.1 and B7-2 do not deliver identical costimulatory signals, since B7-2 but not B7-1 preferentially costimulates the initial production of IL-4 Immunity 1995 2: 523–532

    Article  CAS  PubMed  Google Scholar 

  33. Kuchroo VK et al. B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 development pathways: application to autoimmune disease therapy Cell 1995 80: 707–718

    Article  CAS  PubMed  Google Scholar 

  34. Lenschow DJ et al. Differential effects of anti-B7-1 and anti-B7-2 monoclonal antibody treatment on the development of diabetes in the nonobese diabetic mouse J Exp Med 1995 181: 1145–1155

    Article  CAS  PubMed  Google Scholar 

  35. King C et al. Interleukin-4 acts at the locus of the antigen-presenting dendritic cell to counter-regulate cytotoxic CD8+ T-cell responses Nat Med 2001 7: 206–214

    Article  CAS  PubMed  Google Scholar 

  36. Sethna MP et al. A negative regulatory function of B7 revealed in B7-1 transgenic mice Immunity 1994 1: 415–421

    Article  CAS  PubMed  Google Scholar 

  37. Fields PA et al. Intravenous administration of an E1/E3-deleted adenoviral vector induces tolerance to factor IX in C57Bl/6 mice Gene Therapy 2001 8: 354–361

    Article  CAS  PubMed  Google Scholar 

  38. Stein CS, Martins I, Davidson BL . Long-term reversal of hypercholesterolemia in low density lipoprotein receptor (LDLR)-deficient mice by adenovirus-mediated LDLR gene transfer combined with CD154 blockade J. Gene Med 2000 2: 41–51

    Article  CAS  PubMed  Google Scholar 

  39. Kosuga M et al. Adenovirus-mediated gene therapy for mucopolysaccharidosis VII: involvement of cross-correction in wide-spread distribution of the gene products and long-term effects of CTLA4-Ig coexpression Mol Ther 2000 1: 406–413

    Article  CAS  PubMed  Google Scholar 

  40. Larsen CP et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways Nature 1996 381: 434–438

    Article  CAS  PubMed  Google Scholar 

  41. Howland KC, Ausubel LJ, London CA, Abbas AK . The roles of CD28 and CD40 ligand in T cell activation and tolerance J Immunol 2000 164: 4465–4470

    Article  CAS  PubMed  Google Scholar 

  42. Borriello F et al. B7-1 and B7-2 have overlapping, critical roles in immunoglobulin class switching and germinal center formation Immunity 1997 6: 303–313

    Article  CAS  PubMed  Google Scholar 

  43. Blazar BR et al. Infusion of anti-B7.1 (CD80) and anti-B7.2 (CD86) monoclonal antibodies inhibits murine graft-versus-host disease lethality in part via direct effects on CD4+ and CD8+ T cells J Immunol 1996 157: 3250–3259

    CAS  PubMed  Google Scholar 

  44. Schweitzer AN et al. Role of costimulators in T cell differentiation: studies using antigen-presenting cells lacking expression of CD80 or CD86 J Immunol 1997 158: 2713–2722

    CAS  PubMed  Google Scholar 

  45. Sigal LJ, Reiser H, Rock KL . The role of B7-1 and B7-2 costimulation for the generation of CTL responses in vivo J Immunol 1998 161: 2740–2745

    CAS  PubMed  Google Scholar 

  46. Kirk AD et al. CTLA4-Ig and anti-CD40 ligand prevent allograft rejection in primates Proc Natl Acad Sci USA 1997 94: 8789–8794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li Y et al. Blocking both signal 1 and signal 2 of T-cell activation prevents apoptosis of alloreactive T cells and induction of peripheral allograft tolerance Nat Med 1999 5: 1298–1302

    Article  CAS  PubMed  Google Scholar 

  48. Reiser H, Schneeberger EE . Expression and function of B7-1 and B7-2 in hapten-induced contact sensitivity Eur J Immunol 1996 26: 880–885

    Article  CAS  PubMed  Google Scholar 

  49. Chartier C et al. Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli J Virol 1996 70: 4805–4810

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lusky M et al. In vitro and in vivo biology of recombinant adenovirus vectors with E1, E1/E2A, or E1/E4 deleted J Virol 1998 72: 2022–2032

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Mittereder N, March KL, Trapnell BC . Evaluation of the concentration and bioactivity of adenovectors for gene therapy J Virol 1996 70: 7498–7509

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Peter van Kooten (Faculty of Veterinary Medicine, Utrecht, NL) for the gift of hybridoma cell lines and for his help in producing and purifying the mAbs. We thank Majid Mehtali, Ronald Rooke for critical reading of the manuscript, Bruce Acres and Monika Lusky for helpful discussions.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziller, C., Stoeckel, F., Boon, L. et al. Transient blocking of both B7.1 (CD80) and B7.2 (CD86) in addition to CD40–CD40L interaction fully abrogates the immune response following systemic injection of adenovirus vector. Gene Ther 9, 537–546 (2002). https://doi.org/10.1038/sj.gt.3301684

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301684

Keywords

This article is cited by

Search

Quick links