Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Tumour cell radiosensitization using constitutive (CMV) and radiation inducible (WAF1) promoters to drive the iNOS gene: a novel suicide gene therapy

Abstract

Nitric oxide (NO) has many characteristics including cytotoxicity, radiosensitization and anti-angiogenesis, which make it an attractive molecule for use in cancer therapy. We have investigated the use of iNOS gene transfer, driven by both a constitutive (CMV) and X-ray inducible (WAF1) promoter, for generating high concentrations of NO within tumour cells. We have combined this treatment with radiation to exploit the radiosensitizing properties of this molecule. Transfection of murine RIF-1 tumour cells in vitro with the iNOS constructs resulted in increased iNOS protein levels. Under hypoxic conditions cells were radiosensitized by delivery of both constructs so that these treatments effectively eliminated the radioresistance observed under hypoxic conditions. In vivo transfer of the CMV/iNOS construct by direct tumour injection resulted in a delay (4.2 days) in tumour growth compared with untreated controls. This was equivalent to the effect of 20 Gy X-rays alone. Combination of CMV/iNOS gene transfer with 20 Gy X-rays resulted in a dramatic 19.8 day growth delay compared with controls. Tumours treated with the CMV/iNOS showed large areas of necrosis and abundant apoptosis. We believe that iNOS gene transfer has the potential to be a highly effective treatment in combination with radiotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Moncada S., Palmer R.M., Higgs E.A. . Nitric oxide: physiology, pathophysiology, and pharmacology Pharmacol Rev 1991 43: 109 109

    CAS  PubMed  Google Scholar 

  2. Maeda H., Akaike T. . Nitric oxide and oxygen radicals in infection, inflammation, and cancer Biochemistry (Mosc) 1998 63: 854 854

    CAS  Google Scholar 

  3. Brennan P.A. . The actions and interactions of nitric oxide in tumours Eur J Surg Oncol 2000 5: 434 434

    Article  Google Scholar 

  4. Doi X. et al. Excessive production of nitric oxide in rat solid tumor and its implication in rapid tumor growth Cancer 1996 77: 1598 1598

    Article  CAS  PubMed  Google Scholar 

  5. Kennovin G.D., Hirst D.G., Stratford M.R.L., Flitney F.W. . Inducible nitric oxide synthase is expressed in tumour associated vasculature: inhibition retards tumour growth in vivo Moncada S, Feelish M, Busse R, Higgs EA (eds); The Biology of Nitric Oxide, Immunology and Inflammation Portland Press Proceedings 1995 pp 473–479

  6. MacMicking J., Xie Q.W., Nathan C. . Nitric oxide and macrophage function Annu Rev Immunol 1997 15: 323 323

    Article  CAS  PubMed  Google Scholar 

  7. Peretti M., Szabo C., Thiemermann C. . Effect of interleukin-4 and interleukin-10 on leukocytes migration and nitric oxide production in the mouse Br J Pharmacol 1995 116: 2251 2251

    Article  Google Scholar 

  8. Mitchell J.B. et al. Hypoxic mammalian cell radiosensitization by nitric oxide Cancer Res 1993 53: 5845 5845

    CAS  PubMed  Google Scholar 

  9. Janssens M.Y. et al. Activation of inducible nitric oxide synthase results in nitric oxide-mediated radiosensitization of hypoxic EMT-6 tumor cells Cancer Res 1998 58: 5646 5646

    CAS  PubMed  Google Scholar 

  10. Kurimoto M. et al. Growth inhibition and radiosensitization of cultured glioma cells by nitric oxide generating agents J Neurooncol 1999 42: 35 35

    Article  CAS  PubMed  Google Scholar 

  11. Griffin R.J., Makepeace C.M., Hur W.J., Song C.W. . Radiosensitization of hypoxic cells in vitro by nitric oxide Int J Radiat Oncol Biol Phys 1996 36: 377 377

    Article  CAS  PubMed  Google Scholar 

  12. Soler M.N. et al. Gene therapy of rat medullary thyroid cancer by naked nitric oxide synthase II DNA injection J Gene Med 2000 2: 344 344

    Article  CAS  PubMed  Google Scholar 

  13. Juang S.H. et al. Use of retroviral vectors encoding murine inducible nitric oxide synthase gene to suppress tumorigenicity and cancer metastasis of murine melanoma Cancer Biother Radiopharm 1997 12: 167 167

    Article  CAS  PubMed  Google Scholar 

  14. Kuroki M. et al. Specific targeting strategies of cancer gene therapy using a single-chain variable fragment (scFv) with a high affinity for CEA Anticancer Res 2000 20: 4067 4067

    CAS  PubMed  Google Scholar 

  15. Juang S.H. et al. Suppression of tumorigenicity and metastasis of human renal carcinoma cells by infection with retroviral vectors harboring the murine inducible nitric oxide synthase gene Hum Gene Ther 1989 9: 845 845

    Article  Google Scholar 

  16. Xie K. et al. Direct correlation between expression of endogenous inducible nitric oxide synthase and regression of M5076 reticulum cell sarcoma hepatic metastases in mice treated with liposomes containing lipopeptide CGP 31362 Cancer Res 1995 55: 3123 3123

    CAS  PubMed  Google Scholar 

  17. El-Deiry W.S. et al. WAF1, a potential mediator of p53 tumour suppression Cell 1995 75: 817 817

    Article  Google Scholar 

  18. Worthington J. et al. Modification of vascular tone using iNOS under the control of a radiation-inducible promoter Gene Therapy 2000 7: 1126 1126

    Article  CAS  PubMed  Google Scholar 

  19. Vaupel P.W. . The influence of tumor blood flow and microenvironmental factors on the efficacy of radiation, drugs and localized hyperthermia Klin Padiatr 1997 209: 243 243

    Article  CAS  PubMed  Google Scholar 

  20. Dachs G., Tozer G.M. . Hypoxia modulated gene expression: angiogenesis, metastasis and therapeutic exploitation Eur J Cancer 2000 36: 1649 1649

    Article  CAS  PubMed  Google Scholar 

  21. Tozer G.M. et al. The comparative effects of the NOS inhibitor Nomega-nitro-L-arginine, and the haemoxygenase inhibitor, zinc protoporphyrin IX, on tumour blood flow Int J Radiat Oncol Biol Phys 1998 42: 849 849

    Article  CAS  PubMed  Google Scholar 

  22. Tamir S., Burney S., Tannenbaum S.R. . DNA damage by nitric oxide Chem Res Toxicol 1996 9: 821 821

    Article  CAS  PubMed  Google Scholar 

  23. DeRojas-Walker T. et al. Nitric oxide induces oxidative damage in addition to deaminationin macrophage DNA Chem Res Toxicol 1995 8: 473 473

    Article  CAS  PubMed  Google Scholar 

  24. Wink D.A. et al. The cytotoxicity of nitroxyl: possible implications for the the pathophysiological role of NO Arch Biochem Biophy 1998 351: 66 66

    Article  CAS  Google Scholar 

  25. Li H., Forstermann U. . Nitric oxide in the pathogenesis of vascular disease J Pathol 2000 190: 244 244

    Article  CAS  PubMed  Google Scholar 

  26. Burney S. et al. A mechanism analysis of nitric oxide-induced cellular toxicity Nitric Oxide 1997 1: 130 130

    Article  CAS  PubMed  Google Scholar 

  27. Schimmel M., Bauer G. . Selective apoptosis induction in transformed fibroblasts by B cell lines: involvement of reactive oxygen and nitrogen species Int J Oncol 2001 19: 299 299

    CAS  PubMed  Google Scholar 

  28. Sakkoula E., Haralabopoulos G., Andriopoulou P., Magoudakis M.E. . Evidence that nitric oxide is an endogenous anti-angiogenic mediator Br J Pharmacol 1994 111: 894 894

    Article  PubMed  PubMed Central  Google Scholar 

  29. Barba D. et al. Development of anti-tumour immunity following thymidine kinase-mediated killing of experimental brain tumours Proc Natl Acad Sci USA 1994 91: 4348 4348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Caruso M. et al. Regression of established macroscopic liver metastases after in situ transduction of a suicide gene Proc Natl Acad Sci USA 1993 90: 7024 7024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hibbs J.B., Taintor R.R., Vavrin Z., Rachlin E.M. . Nitric oxide: a cytotoxic activated macrophage effector molecule Biochem Biophys Res Commun 1988 157: 87 87

    Article  CAS  PubMed  Google Scholar 

  32. Xie K. et al. Destruction of bystander cells by tumor cells transfected with inducible nitric oxide (NO) synthase gene J Natl Cancer Inst 1997 89: 421 421

    Article  CAS  PubMed  Google Scholar 

  33. Palmer R.M., Rees D.D., Ashton D.S., Moncada S. . L-arginine is the physiological precursor for the formation of NO in endothelium-dependent relaxation Biochem Biophys Res Commun 1988 153: 1251 1251

    Article  CAS  PubMed  Google Scholar 

  34. Vodovotz Y. et al. Induction of nitric oxide production in infiltrating leukocytes following in vivo irradiation of tumour-bearing mice Radiat Oncol Invest 1999 7: 86 86

    Article  CAS  Google Scholar 

  35. Douple E.B., Green C.J., Simic M.G. . Potentiation of cellular radioensitivity by nitroprusside and vitamin B12 Int J Radiat Oncol Biol Phys 1980 6: 1545 1545

    Article  CAS  PubMed  Google Scholar 

  36. Verovski V.N. et al. Intrinsic radiosensitivity of human pancreatic tumour cells and the radiosensitising potency of the nitric oxide donor sodium nitroprusside Br J Cancer 1996 74: 1734 1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brown J.M. . Exploiting the hypoxic cell: mechanisms and therapeutic strategies Mol Med Today 2000 6: 157 157

    Article  CAS  PubMed  Google Scholar 

  38. Khare P.D. et al. Specifically targeted killing of carcinoembryonic antigen (CEA)-expressing cells by a retroviral vector displaying single-chain variable fragmented antibody to CEA and carrying the gene for inducible nitric oxide synthase Cancer Res 2001 61: 370 370

    CAS  PubMed  Google Scholar 

  39. Twentyman P.R. et al. A new mouse tumour model system (RIF-1) for comparison of end-point studies J Natl Cancer Inst 1980 64: 595 595

    CAS  PubMed  Google Scholar 

  40. Green L.C. et al. Analysis of nitrate, nitrite and [15N] nitrate in biological fluids Anal Biochem 1982 126: 131 131

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Cancer Research Campaign, UK. We would also like to thank Drs Stephanie McKeown and Steve Everett for their helpful discussions.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Worthington, J., Robson, T., O'Keeffe, M. et al. Tumour cell radiosensitization using constitutive (CMV) and radiation inducible (WAF1) promoters to drive the iNOS gene: a novel suicide gene therapy. Gene Ther 9, 263–269 (2002). https://doi.org/10.1038/sj.gt.3301609

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301609

Keywords

This article is cited by

Search

Quick links