Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Chimeric PSA enhancers exhibit augmented activity in prostate cancer gene therapy vectors

Abstract

The native PSA enhancer and promoter confer prostate-specific expression when inserted into adenovirus vectors capable of efficient in vivo gene delivery, although the transcriptional activity is low. By exploiting properties of the natural PSA control regions, we have improved the activity and specificity of the prostate-specific PSA enhancer for gene therapy and imaging applications. Previous studies have established that androgen receptor (AR) molecules bind cooperatively to AREs in the PSA enhancer core (−4326 to −3935) and act synergistically with AR bound to the proximal promoter to regulate transcriptional output. To exploit the synergistic nature of AR action we generated chimeric enhancer constructs by (1) insertion of four tandem copies of the proximal AREI element; (2) duplication of enhancer core; or (3) removal of intervening sequences (−3744 to −2855) between the enhancer and promoter. By comparing to the baseline construct, PSE, containing the PSA enhancer (−5322 to −2855) fused to the proximal promoter (−541 to +12), the three most efficacious chimeric constructs, PSE-BA (insertion of ARE4), PSE-BC (duplication of core) and PSE-BAC (insertion of core and ARE4), are 7.3-, 18.9-, and 9.4-fold higher, respectively. These chimeric PSA enhancer constructs are highly androgen inducible and retain a high degree of tissue discriminatory capability. Initial biochemical studies reveal that the augmented activity of the chimeric constructs in vivo correlates with their ability to recruit AR and critical co-activators in vitro. The enhanced activity, inducibility and specificity of the chimeric constructs are retained in an adenoviral vector (Ad-PSE-BC-luc). Systemic administration of Ad-PSE-BC-luc into SCID mice harboring the LAPC-9 human prostate cancer xenografts shows that this prostate specific vector retained tissue discriminatory capability compared with a comparable cytomegalovirus (CMV) promoter driven vector. Gene Therapy (2001) 8, 1416–1426.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Landis SH, Murray T, Bolden S, Wingo PA . Cancer statistics, 1999 CA Cancer J Clin 1999 49: 8–31

    Article  CAS  PubMed  Google Scholar 

  2. Aumuller G et al. Species- and organ-specificity of secretory proteins derived from human prostate and seminal vesicles Prostate 1990 17: 31–40

    Article  CAS  PubMed  Google Scholar 

  3. Catalona WJ et al. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer N Engl J Med 1991 324: 1156–1161

    Article  CAS  PubMed  Google Scholar 

  4. Young CY, Andrews PE, Montgomery BT, Tindall DJ . Tissue-specific and hormonal regulation of human prostate-specific glandular kallikrein Biochemistry 1992 31: 818–824

    Article  CAS  PubMed  Google Scholar 

  5. Schuur ER et al. Prostate-specific antigen expression is regulated by an upstream enhancer J Biol Chem 1996 271: 7043–7051

    Article  CAS  PubMed  Google Scholar 

  6. Cleutjens KB et al. An androgen response element in a far upstream enhancer region is essential for high, androgen-regulated activity of the prostate-specific antigen promoter Mol Endocrinol 1997 11: 148–161

    Article  CAS  PubMed  Google Scholar 

  7. Pang S et al. Identification of a positive regulatory element responsible for tissue-specific expression of prostate-specific antigen Cancer Res 1997 57: 495–499

    CAS  PubMed  Google Scholar 

  8. Riegman PH et al. The promoter of the prostate-specific antigen gene contains a functional androgen responsive element Mol Endocrinol 1991 12: 1921–1930

    Article  Google Scholar 

  9. Pang S et al. Prostate tissue specificity of the prostate-specific antigen promoter isolated from a patient with prostate cancer Hum Gene Ther 1995 6: 1417–1426

    Article  CAS  PubMed  Google Scholar 

  10. Cleutjens KB et al. Two androgen response regions cooperate in steroid hormone regulated activity of the prostate-specific antigen promoter J Biol Chem 1996 271: 6379–6388

    Article  CAS  PubMed  Google Scholar 

  11. Zhang J et al. Identification of two novel cis-elements in the promoter of the prostate-specific antigen gene that are required to enhance androgen receptor-mediated transactivation Nucleic Acids Res 1997 25: 3143–3150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Luke MC, Coffey DS . Human androgen receptor binding to the androgen response element of prostate specific antigen J Androl 1994 15: 41–51

    CAS  PubMed  Google Scholar 

  13. Cleutjens KB et al. A 6-kb promoter fragment mimics in transgenic mice the prostate-specific and androgen-regulated expression of the endogenous prostate-specific antigen gene in humans Mol Endocrinol 1997 11: 1256–1265

    Article  CAS  PubMed  Google Scholar 

  14. Schaffner DL et al. Transgenic mice carrying a PSArasT24 hybrid gene develop salivary gland and gastrointestinal tract neoplasms Lab Invest 1995 72: 283–290

    CAS  PubMed  Google Scholar 

  15. Wei C et al. Tissue-specific expression of the human prostate-specific antigen gene in transgenic mice: implications for tolerance and immunotherapy Proc Natl Acad Sci USA 1997 94: 6369–6374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang W et al. Cooperative assembly of androgen receptor into a nucleoprotein complex that regulates the prostate-specific antigen enhancer J Biol Chem 1999 274: 25756–25768

    Article  CAS  PubMed  Google Scholar 

  17. Lee SE et al. Development of a new plasmid vector with PSA-promoter and enhancer expressing tissue-specificity in prostate carcinoma cell lines Anticancer Res 2000 20: 417–422

    CAS  PubMed  Google Scholar 

  18. Spitzweg C et al. Prostate-specific antigen (PSA) promoter-driven androgen-inducible expression of sodium iodide symporter in prostate cancer cell lines Cancer Res 1999 59: 2136–2141

    CAS  PubMed  Google Scholar 

  19. Gotoh A et al. Development of prostate-specific antigen promoter-based gene therapy for androgen-independent human prostate cancer J Urol 1998 160: 220–229

    Article  CAS  PubMed  Google Scholar 

  20. Steiner MS, Zhang Y, Carraher J, Lu Y . In vivo expression of prostate-specific adenoviral vectors in a canine model Cancer Gene Ther 1999 6: 456–464

    Article  CAS  PubMed  Google Scholar 

  21. Herman JR et al. In situ gene therapy for adenocarcinoma of the prostate: a phase I clinical trial Hum Gene Ther 1999 10: 1239–1249

    Article  CAS  PubMed  Google Scholar 

  22. Rodriguez R et al. Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells Cancer Res 1997 57: 2559–2563

    CAS  PubMed  Google Scholar 

  23. Reid KJ et al. Two classes of androgen receptor elements mediate cooperativity through allosteric interactions J Biol Chem 2001 276: 2943–2952

    Article  CAS  PubMed  Google Scholar 

  24. Bruhn L, Munnerlyn A, Grosschedl R . ALY, a context-dependent coactivator of LEF-1 and AML-1, is required for TCR alpha enhancer function Genes Dev 1997 11: 640–653

    Article  CAS  PubMed  Google Scholar 

  25. Carey M . The enhanceosome and transcriptional synergy Cell 1998 92: 5–8

    Article  CAS  PubMed  Google Scholar 

  26. Falvo JV, Thanos D, Maniatis T . Reversal of intrinsic DNA bends in the IFN beta gene enhancer by transcription factors and the architectural protein HMG I(Y) Cell 1995 83: 1101–1111

    Article  CAS  PubMed  Google Scholar 

  27. Thanos D, Maniatis T . Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome Cell 1995 83: 1091–1100

    Article  CAS  PubMed  Google Scholar 

  28. Szelei J et al. Androgen-induced inhibition of proliferation in human breast cancer MCF7 cells transfected with androgen receptor Endocrinology 1997 138: 1406–1412

    Article  CAS  PubMed  Google Scholar 

  29. Hitt M et al. Techniques for human adenovirus vector construction and characterization Meth Mol Genet 1995 7: 13–30

    Article  CAS  Google Scholar 

  30. Belldegrun A et al. Human renal carcinoma line transfected with interleukin-2 and /or interferon alpha gene(s): implications for live cancer vaccines J Natl Cancer Inst 1993 85: 207–216

    Article  CAS  PubMed  Google Scholar 

  31. Miller PW et al. Intratumoral administration of adenoviral interleukin 7 gene-modified dendritic cells augments specific antitumor immunity and achieves tumor eradication Hum Gene Ther 2000 11: 53–65

    Article  CAS  PubMed  Google Scholar 

  32. Klein KA et al. Progression of metastatic human prostate cancer to androgen independence in immunodeficient SCID mice Nat Med 1997 3: 402–408

    Article  CAS  PubMed  Google Scholar 

  33. Craft N et al. Evidence for clonal outgrowth of androgen-independent prostate cancer cells from androgen-dependent tumors through a two-step process Cancer Res 1999 59: 5030–5036

    CAS  PubMed  Google Scholar 

  34. Herz J, Gerard RD . Adenovirus-mediated transfer of low density lipoprotein receptor gene acutely accelerates cholesterol clearance in normal mice Proc Natl Acad Sci USA 1993 90: 2812–2816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Berk AJ . Activation of RNA polymerase II transcription Curr Opin Cell Biol 1999 11: 330–335

    Article  CAS  PubMed  Google Scholar 

  36. Costa RH, Grayson DR, Darnell JE Jr . Multiple hepatocyte-enriched nuclear factors function in the regularion of transthyretin and α1-antitrypsin genes Mol Cell Biol 1989 9: 1415–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Oettgen P et al. PDEF, a novel prostate epithelium-specific ets transcription factor, interacts with the androgen receptor and activates prostate-specific antigen gene expression J Biol Chem 2000 275: 1216–1225

    Article  CAS  PubMed  Google Scholar 

  38. Kasper S et al. Selective activation of the probasin androgen responsive region by steroid hormones J Mol Endo 1999 22: 313–325

    Article  CAS  Google Scholar 

  39. Latham JP, Searle PF, Mautner V, James ND . Prostate-specific antigen promoter/enhancer driven gene therapy for prostate cancer: construction and testing of a tissue-specific adenovirus vector Cancer Res 2000 60: 334–341

    CAS  PubMed  Google Scholar 

  40. Parks RJ et al. A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal Proc Natl Acad Sci USA 1996 93: 13565–13570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Curiel DT . Strategies to adapt adenoviral vectors for targeted delivery Ann NY Acad Sci 1999 886: 158–171

    Article  CAS  PubMed  Google Scholar 

  42. Nishikasa M, Huang L . Nonviral vectors in the new millennium: delivery barriers in gene transfer Hum Gene Ther 2001 12: 861–870

    Article  Google Scholar 

  43. Koivisto P et al. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer Cancer Res 1997 57: 314–319

    CAS  PubMed  Google Scholar 

  44. Sadar MD . Androgen-independent induction of prostate-specific antigen gene expression via cross-talk between the androgen receptor and protein kinase A signal transduction pathways J Biol Chem 1999 274: 7777–7783

    Article  CAS  PubMed  Google Scholar 

  45. Craft N, Shostak Y, Carey M, Sawyers CL . A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signalling by the HER-2/neu tyrosine kinase Nature Med 1999 5: 280–285

    Article  CAS  PubMed  Google Scholar 

  46. Zhao XY et al. Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor Nature Med 2000 6: 703–6

    Article  CAS  PubMed  Google Scholar 

  47. Gambhir SS et al. Imaging of adenoviral directed herpes simplex virus type 1 thymidine kinase gene expression in mice with ganciclovir J Nucl Med 1998 39: 2003–2011

    CAS  PubMed  Google Scholar 

  48. Gambhir SS et al. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography Proc Natl Acad Sci USA 1999 96: 2333–2338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gomez-Foix AM et al. Adenovirus-mediated transfer of the muscle glycogen phosphorylase gene into hepatocytes confers altered regulation of glycogen metabolism J Biol Chem 1992 267: 25129–25134

    CAS  PubMed  Google Scholar 

  50. Hirt B . Selective extraction of polyoma DNA from infected mouse cell cultures J Mol Biol 1967 26: 365–369

    Article  CAS  PubMed  Google Scholar 

  51. Tan BT, Wu L, Berk AJ . An adenovirus Epstein–Barr virus hybrid vector that stably transforms cultured cells with high efficiency J Virol 1999 73: 7582–7589

    CAS  PubMed  PubMed Central  Google Scholar 

  52. McGrory WJ, Bautista DS, Graham FL . A simple technique for the recue of early region I mutations into infectious human adenovirus type 5 Virology 1988 163: 614–617

    Article  CAS  PubMed  Google Scholar 

  53. Dignam JD, Martin PL, Shastry BS, Roeder RG . Eukaryotic gene transcription with purified components Meth Enzymol 1983 101: 582–598

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Department of Army (PC970515, LW and AB), California Cancer Research Program (99–00579V-10191, LW), UCLA Gene Medicine Program, CaPCURE (MC) and Jonsson Comprehesive Cancer Center. We gratefully acknowledge helpful discussion and support from Drs AJ Berk, CL Sawyers, R Reiter, S Gambhir, J deKernion and CL Tso.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, L., Matherly, J., Smallwood, A. et al. Chimeric PSA enhancers exhibit augmented activity in prostate cancer gene therapy vectors. Gene Ther 8, 1416–1426 (2001). https://doi.org/10.1038/sj.gt.3301549

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301549

Keywords

This article is cited by

Search

Quick links