Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viral Transfer Technology
  • Published:

Long-term silencing of retroviral vectors is resistant to reversal by trichostatin A and 5-azacytidine

Abstract

One problem limiting the development of long-term gene replacement therapy is gene silencing. A variety of experiments have implicated DNA methylation and histone deacetylation in gene silencing and shown that the agents 5-azacytidine (5-Aza) and trichostatin A (TSA) are able to reverse these effects. To begin to investigate clinically relevant strategies to reverse silencing with these drugs, we transduced the MEL and FDCP-1 hematopoietic cell lines with Moloney murine leukemia virus (MMLV) and Harvey murine sarcoma virus (HMSV)-based retroviral vectors carrying the β-galactosidase/neomycin resistance fusion gene (β-geo). Fifty-one clones were isolated under G418 selection over 2 weeks and then allowed to grow without selection as β-gal activity was monitored over time. More than 80% of these clones showed significant silencing over a period of 70–80 days. The clones were then exposed to a wide range of 5-Aza and TSA concentrations, both alone and in combination, in an effort to reverse silencing. Despite demonstration that the agents were able to decrease DNA methylation and increase histone acetylation, significant reversal of long-term silencing was not seen under any experimental condition. These results suggest that long-term retroviral silencing involves mechanisms in addition to DNA methylation and histone acetylation and that new pharmacologic strategies are needed to overcome the silencing process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Office of Recombinant DNA Activities (ORDA) . Human gene therapy protocols. NIH, 1999, update 2/10

  2. Hoeben R et al. Inactivation of the Moloney murine leukemia virus long terminal repeat in murine fibroblast cell lines is associated with methylation and dependent on its chromosomal position J Virol 1991 65: 904–912

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Yoder J, Walsh C, Bestor T . Cytosine methylation and the ecology of intragenomic parasites Trends Genet 1997 13: 335–340

    Article  CAS  PubMed  Google Scholar 

  4. Stuhlmann H, Jahner D, Jaenisch R . Infectivity and methylation of retroviral genomes is correlated with expression in the animal Cell 1981 26: 221–232

    Article  CAS  PubMed  Google Scholar 

  5. Jahner D et al. De novo methylation and expression of retroviral genomes during mouse embryogenesis Nature 1982 298: 623–628

    Article  CAS  PubMed  Google Scholar 

  6. Stewart C, Stuhlmann H, Jahner D, Jaenisch R . De novo methylation, expression, and infectivity of retroviral genomes introduced into embryonal carcinoma cells Proc Natl Acad Sci USA 1982 79: 4098–4102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jahner D, Jaenisch R . Retrovirus-induced de novo methylation of flanking host sequences correlates with gene activity Nature 1985 315: 594–597

    Article  CAS  PubMed  Google Scholar 

  8. Challita P-M, Kohn D . Lack of expression from a retroviral vector after transduction of murine hematopoietic stem cells is associated with methylation in vivo Proc Natl Acad Sci USA 1994 91: 2567–2571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bestor T, Verdine G . DNA methyltransferases Curr Opin Cell Biol 1994 6: 380–389

    Article  CAS  PubMed  Google Scholar 

  10. Bird A . CpG-rich islands and the function of DNA methylation Nature 1986 321: 209–213

    Article  CAS  PubMed  Google Scholar 

  11. St Louis D, Verma I . An alternative approach to somatic cell gene therapy Proc Natl Acad Sci USA 1988 85: 3150–3154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Palmer TD, Rosman GJ, Osborne WRA, Miller AD . Genetically modified skin fibroblasts persist long after transplantation but gradually inactivate introduced genes Proc Natl Acad Sci USA 1991 88: 1330–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Petersen R, Kempler G, Barklis E . A stem cell-specific silencer in the primer-binding site of a retrovirus Mol Cell Biol 1991 11: 1214–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kempler G et al. Characterization of the Moloney murine leukemia virus stem cell-specific repressor binding site Virology 1993 193: 690–699

    Article  CAS  PubMed  Google Scholar 

  15. Challita P-M et al. Multiple modifications in cis elements of the long terminal repeat of retroviral vectors lead to increased expression and decreased DNA methylation in embryonic carcinoma cells J Virol 1995 69: 748–755

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang L, Robbins PB, Carbonaro DA, Kohn DB . High-resolution analysis of cytosine methylation in the 5′ long terminal repeat of retroviral vectors Hum Gene Ther 1998 9: 2321–2330

    Article  CAS  PubMed  Google Scholar 

  17. Robbins PB et al. Consistent, persistent expression from modified retroviral vectors in murine hematopoietic stem cells Proc Natl Acad Sci USA 1998 95: 10182–10187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Okano M, Xie S, Li E . Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases Nat Genet 1998 19: 219–220

    Article  CAS  PubMed  Google Scholar 

  19. Pruss D, Hayes JJ, Wolffe AP . Nucleosomal anatomy: where are the histones? Bioessays 1995 17: 161–170

    Article  CAS  PubMed  Google Scholar 

  20. Braunstein M et al. Transcriptional silencing in yeast is associated with reduced histone acetylation Gene Dev 1993 7: 592–604

    Article  CAS  PubMed  Google Scholar 

  21. Jeppesen P, Turner BM . The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression Cell 1993 74: 281–291

    Article  CAS  PubMed  Google Scholar 

  22. Braunstein M et al. Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern Mol Cell Biol 1996 16: 4349–4356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Taunton J, Hassig C, Schreiber S . A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p Science 1996 272: 408–411

    Article  CAS  PubMed  Google Scholar 

  24. Pazin MJ, Kadonaga JT . What's up and down with histone deacetylation and transcription? Cell 1997 89: 325–328

    Article  CAS  PubMed  Google Scholar 

  25. Nan X et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex Nature 1998 393: 386–389

    Article  CAS  PubMed  Google Scholar 

  26. Jones PL et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription Nat Genet 1998 19: 187–191

    Article  CAS  PubMed  Google Scholar 

  27. Selker EU . Trichostatin A causes selective loss of DNA methylation in Neurospora Proc Natl Acad Sci USA 1998 95: 9430–9435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Robbins PB et al. Increased probability of expression from modified retroviral vectors in embryonal stem cells and embryonal carcinoma cells J Virol 1997 71: 9466–9474

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Laker C et al. Host cis-mediated extinction of a retrovirus permissive for expression in embryonal stem cells during differentiation J Virol 1998 72: 339–348

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Jaenisch R, Schnieke A, Harbers K . Treatment of mice with 5-azacytidine efficiently activates silent retroviral genomes in different tissues Proc Natl Acad Sci USA 1985 82: 1451–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lengauer C, Kinzler KW, Vogelstein B . DNA methylation and genetic instability in colorectal cancer cells Proc Natl Acad Sci USA 1997 94: 2545–2550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gram G, Nielsen S, Hansen J . Spontaneous silencing of humanized green fluorescent protein (hGFP) gene expression from a retroviral vector by DNA methylation J Hematother 1998 7: 333–341

    Article  CAS  PubMed  Google Scholar 

  33. Kuriyama S et al. Expression of a retrovirally transduced gene under control of an internal housekeeping gene promoter does not persist due to methylation and is restored partially by 5-azacytidine treatment Gene Therapy 1998 5: 1299–1305

    Article  CAS  PubMed  Google Scholar 

  34. Chen WY et al. Reactivation of silenced, virally transduced genes by inhibitors of histone deacetylase Proc Natl Acad Sci USA 1997 94: 5798–5803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Condreay J, Witherspoon S, Clay W, Kost T . Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector Proc Natl Acad Sci USA 1999 96: 127–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Juttermann R, Li E, Jaenisch R . Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation Proc Natl Acad Sci USA 1994 91: 11797–11801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chitambar C et al. Evaluation of continuous infusion low-dose 5-azacytidine in the treatment of myelodysplastic syndromes Am J Hematol 1991 37: 100–104

    Article  CAS  PubMed  Google Scholar 

  38. Goldberg J et al. Mitoxantrone and 5-azacytidine for refractory/relapsed ANLL or CML in blast crisis: a leukemia intergroup study Am J Hematol 1993 43: 286–290

    Article  CAS  PubMed  Google Scholar 

  39. Lowrey CH, Nienhuis AW . Brief report: treatment with azacytidine of patients with end-stage beta-thalassemia New Engl J Med 1993 329: 845–848

    Article  CAS  PubMed  Google Scholar 

  40. Dexter TM et al. Growth of factor-dependent hemopoietic precursor cell lines J Exp Med 1980 152: 1036–1047

    Article  CAS  PubMed  Google Scholar 

  41. Friedrich G, Soriano P . Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice Gene Dev 1991 5: 1513–1523

    Article  CAS  PubMed  Google Scholar 

  42. Fiering SN et al. Improved FACS-Gal: flow cytometric analysis and sorting of viable eukaryotic cells expressing reporter gene constructs Cytometry 1991 12: 291–301

    Article  CAS  PubMed  Google Scholar 

  43. Glover AB, Leyland-Jones B . Biochemistry of azacytidine: a review Cancer Treat Rep 1987 71: 959–964

    CAS  PubMed  Google Scholar 

  44. Israili Z et al. The disposition and pharmacokinetics in humans of 5-azacytidine administered intravenously as a bolus or by continuous infusion Cancer Res 1976 36: 1453–1461

    CAS  PubMed  Google Scholar 

  45. Luo RX, Postigo AA, Dean DC . Rb interacts with histone deacetylase to repress transcription Cell 1998 92: 463–473

    Article  CAS  PubMed  Google Scholar 

  46. Alberts AS, Geneste O, Treisman R . Activation of SRF-regulated chromosomal templates by rho-family GTPases requires a signal that also induces H4 hyperacetylation Cell 1998 92: 475–487

    Article  CAS  PubMed  Google Scholar 

  47. Kuo M et al. Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo Gene Dev 1998 12: 627–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu L, Yee J, Wolff J, Friedmann T . Factors affecting long-term stability of Moloney murine leukemia virus-based vectors Virology 1989 171: 331–341

    Article  CAS  PubMed  Google Scholar 

  49. Pikaart MJ, Recillas-Targa F, Felsenfeld G . Loss of transcriptional activity of a transgene is accompanied by DNA methylation and histone deacetylation and is prevented by insulators Gene Dev 1998 12: 2852–2862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gautsch J, Wilson M . Delayed de novo methylation in teratocarcinoma suggests additional tissue-specific mechanisms for controlling gene expression Nature 1983 301: 32–37

    Article  CAS  PubMed  Google Scholar 

  51. Niwa O, Yokota Y, Ishida H, Sugahara T . Independent mechanisms involved in suppression of the Moloney leukemia virus genome during differentiation of murine teratocarcinoma cells Cell 1983 32: 1105–1113

    Article  CAS  PubMed  Google Scholar 

  52. Selker EU . Gene silencing: repeats that count Cell 1999 97: 157–160

    Article  CAS  PubMed  Google Scholar 

  53. Miller A, Buttimore C . Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production Mol Cell Biol 1986 6: 2895–2902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rosenberg S et al. Gene transfer into humans – immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction New Engl J Med 1990 323: 570–578

    Article  CAS  PubMed  Google Scholar 

  55. Markowitz D, Goff S, Bank A . A safe packaging line for gene transfer: separating viral genes on two different plasmids J Virol 1988 62: 1120–1124

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Spencer HT et al. A gene transfer strategy for making bone marrow cells resistant to trimetrexate Blood 1996 87: 2579–2587

    CAS  PubMed  Google Scholar 

  57. McLachlin JR et al. Factors affecting retroviral vector function and structural integrity Virology 1993 195: 1–5

    Article  CAS  PubMed  Google Scholar 

  58. Walsh CE et al. A functionally active retrovirus vector for gene therapy in Fanconi anemia group C Blood 1994 84: 453–459

    CAS  PubMed  Google Scholar 

  59. Sambrook J, Fritsch E, Maniatis T . Molecular Cloning. A Laboratory Manual Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY 1989

    Google Scholar 

Download references

Acknowledgements

We particularly wish to thank Dr Steven Fiering for insightful discussions and assistance with the flow cytometric β-galactosidase assay. We appreciate the laboratory assistance of Judy Macnab, Michael Nemeth and Michael Layon. We also thank Dr Philip Soriano for providing the β-geo gene construct, Dr Brian Sorrentino for providing the HMSV vector backbone and Dr Ruth Craig for assistance with FDCP-1 cell cultures. This research was supported by NIH F32 HL10083 (JMM) and the Marie Wilkinson Fund. CHL also receives support under NIH RO1 HL52243.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McInerney, J., Nawrocki, J. & Lowrey, C. Long-term silencing of retroviral vectors is resistant to reversal by trichostatin A and 5-azacytidine. Gene Ther 7, 653–663 (2000). https://doi.org/10.1038/sj.gt.3301155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301155

Keywords

This article is cited by

Search

Quick links