Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viral Transfer Technology
  • Published:

Disruption of integrin-dependent adhesion and survival of endothelial cells by recombinant adenovirus expressing isolated β integrin cytoplasmic domains

Abstract

We explored the possibility of using a genetic approach to inhibit integrin-mediated endothelial cell adhesion and survival. We constructed recombinant adenoviruses (Ads) expressing chimeric proteins consisting of the cytoplasmic and transmembrane domains of integrin β1 (CH1), β3 (CH3) or the β1 transmembrane domain alone (CH2) connected to the extracellular domain of L3T4 placed under the control of the CMV promoter (AdCMV) or the endothelial cell specific Tie-1 promoter (AdTie). All constructs were expressed in a dose- and time-dependent manner with over 90% of cells expressing the constructs within 24 h (AdCMVs) or 72 h (AdTies) after infection. Confluent monolayers of HUVEC infected with AdCMVCH1 or AdCMVCH3 detached from the substrate in a time- and dose-dependent manner with over 95% of the cells being detached 2 days (AdCMVs) or 3 to 4 days (AdTies) after infection. Cell detachment was preceded by the disruption of focal adhesions and reorganization of the actin cytoskeleton and was associated with a reduced ligand-binding activity of β1, while cell surface density of β1 integrins remained unchanged. Detached cells failed to re-adhere to different matrix proteins, without, however, any specificity toward β1 or β3 integrin-mediated adhesion. Upon detachment, HUVEC rapidly died by apoptosis. These results demonstrate that dominant negative inhibition of integrin function is an effective approach to disrupt endothelial cell adhesion and survival in vitro.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Folkman J . Angiogenesis in cancer, vascular, rheumatoid and other disease Nature Med 1995 1: 27–31

    Article  CAS  PubMed  Google Scholar 

  2. Boehm T, Folkman J, Browder T, Oreilly MS . Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance Nature 1997 390: 404–407

    Article  CAS  PubMed  Google Scholar 

  3. Bergers G et al. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice Science 1999 284: 808–812

    Article  CAS  PubMed  Google Scholar 

  4. Parangi S et al. Antiangiogenic therapy of transgenic mice impairs de novo tumor growth Proc Natl Acad Sci USA 1996 93: 2002–2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stromblad S, Cheresh DA . Cell adhesion and angiogenesis TIBS 1996 6: 462–468

    CAS  Google Scholar 

  6. Hynes O . Integrins: versatility, modulation, and signaling in cell adhesion Cell 1992 69: 11–25

    Article  CAS  PubMed  Google Scholar 

  7. Bloch W et al. Beta-1 integrin is essential for teratoma growth and angiogenesis J Cell Biol 1997 139: 265–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang JT, Rayburn H, Hynes RO . Embryonic mesodermal defects in alpha 5 integrin-deficient mice Development 1993 119: 1093–1105

    CAS  PubMed  Google Scholar 

  9. Yang JT, Rayburn H, Hynes RO . Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development Development 1995 121: 549–560

    CAS  PubMed  Google Scholar 

  10. Senger DR et al. Angiogenesis promoted by vascular endothelial growth factor – regulation through alpha(1)beta(1) and alpha(2)beta(1) integrins Proc Natl Acad Sci USA 1997 94: 13612–13617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brooks PC . Role of integrins in angiogenesis Eur J Cancer 1996 14: 2423–2429

    Article  Google Scholar 

  12. Drake CJ, Cheresh DA, Little CD . An antagonist of integrin alpha v beta 3 prevents maturation of blood vessels during embryonic neovascularization J Cell Sci 1995 108: 2655–2661

    CAS  PubMed  Google Scholar 

  13. Bader BL, Rayburn H, Crowley D, Hynes RO . Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha-v integrins Cell 1998 95: 507–519

    Article  CAS  PubMed  Google Scholar 

  14. Brooks PC et al. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels Cell 1994 79: 1157–1164

    Article  CAS  PubMed  Google Scholar 

  15. Max R et al. Immunohistochemical analysis of integrin alpha vbeta3 expression on tumor-associated vessels of human carcinomas Int J Cancer 1997 71: 320–324

    Article  CAS  PubMed  Google Scholar 

  16. Brooks PC, Clark RA, Cheresh DA . Requirement of vascular integrin alpha v beta 3 for angiogenesis Science 1994 264: 569–571

    Article  CAS  PubMed  Google Scholar 

  17. Friedlander M et al. Definition of two angiogenic pathways by distinct alpha v integrins Science 1995 270: 1500–1502

    Article  CAS  PubMed  Google Scholar 

  18. Brooks PC et al. Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin J Clin Invest 1995 96: 1815–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stromblad S et al. Suppression of p53 activity and p21WAF1/CIP1 expression by vascular cell integrin alphaVbeta3 during angiogenesis J Clin Invest 1996 98: 426–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Soldi R et al. Role of alpha(v)beta(3) integrin in the activation of vascular endothelial growth factor receptor-2 EMBO J 1999 18: 882–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brooks PC et al. Localization of matrix metalloproteinase mmp-2 to the surface of invasive cells by interaction with integrin alpha-v-beta-3 Cell 1996 85: 683–693

    Article  CAS  PubMed  Google Scholar 

  22. Brooks PC et al. Disruption of angiogenesis by pex, a noncatalytic metalloproteinase fragment with integrin binding activity Cell 1998 92: 391–400

    Article  CAS  PubMed  Google Scholar 

  23. Ruegg C et al. Evidence for the involvement of endothelial cell integrin alpha-v-beta-3 in the disruption of the tumor vasculature induced by tnf and ifn-gamma Nature Med 1998 4: 408–414

    Article  CAS  PubMed  Google Scholar 

  24. Dedhar S, Hannigan GE . Integrin cytoplasmic interactions and bidirectional transmembrane signalling Curr Opin Cell Biol 1996 8: 657–669

    Article  CAS  PubMed  Google Scholar 

  25. LaFlamme SE, Akiyama SK, Yamada KM . Regulation of fibronectin receptor distribution (published erratum appears in J Cell Biol 1992; 118: 491) J Cell Biol 1992 117: 437–447

    Article  CAS  PubMed  Google Scholar 

  26. LaFlamme SE, Thomas LA, Yamada SS, Yamada KM . Single subunit chimeric integrins as mimics and inhibitors of endogenous integrin functions in receptor localization, cell spreading and migration, and matrix assembly J Cell Biol 1994 126: 1287–1298

    Article  CAS  PubMed  Google Scholar 

  27. Smilenov L, Briesewitz R, Marcantonio EE . Integrin beta 1 cytoplasmic domain dominant negative effects revealed by lysophosphatidic acid treatment Molec Biol Cell 1994 5: 1215–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lukashev ME, Sheppard D, Pytela R . Disruption of integrin function and induction of tyrosine phosphorylation by the autonomously expressed beta 1 integrin cytoplasmic domain J Biol Chem 1994 269: 18311–18314

    CAS  PubMed  Google Scholar 

  29. Korhonen J et al. Endothelial-specific gene expression directed by the tie gene promoter in vivo Blood 1995 86: 1828–1835

    CAS  PubMed  Google Scholar 

  30. Iljin K et al. Role of Ets factors in the activity and endothelial cell specificity of the mouse Tie gene promoter FASEB J 1999 13: 377–386

    Article  CAS  PubMed  Google Scholar 

  31. Re F et al. Inhibition of anchorage-dependent cell spreading triggers apoptosis in cultured human endothelial cells J Cell Biol 1994 127: 537–546

    Article  CAS  PubMed  Google Scholar 

  32. Frisch SM, Francis H . Disruption of epithelial cell–matrix interactions induces apoptosis J Cell Biol 1994 124: 619–626

    Article  CAS  PubMed  Google Scholar 

  33. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C . A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V J Immunol Methods 1995 184: 39–51

    Article  CAS  PubMed  Google Scholar 

  34. Idziorek T, Estaquier J, De Bels F, Ameisen JC . YOPRO-1 permits cytofluorometric analysis of programmed cell death (apoptosis) without interfering with cell viability J Immunol Methods 1995 185: 249–258

    Article  CAS  PubMed  Google Scholar 

  35. Luque A et al. Activated conformations of very late activation integrins detected by a group of antibodies (HUTS) specific for a novel regulatory region (355–425) of the common beta 1 chain J Biol Chem 1996 271: 11067–11075

    Article  CAS  PubMed  Google Scholar 

  36. Mastrangelo AM, Homan SM, Humphries MJ, LaFlamme SE . Amino acid motifs required for isolated beta cytoplasmic domains to regulate ‘in trans’ beta1 integrin conformation and function in cell attachment J Cell Sci 1999 112: 217–229

    CAS  PubMed  Google Scholar 

  37. Diaz-Gonzalez F, Forsyth J, Steiner B, Ginsberg MH . Trans-dominant inhibition of integrin function Molec Biol Cell 1996 7: 1939–1951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Filardo EJ et al. Requirement of the NPXY motif in the integrin beta 3 subunit cytoplasmic tail for melanoma cell migration in vitro and in vivo J Cell Biol 1995 130: 441–450

    Article  CAS  PubMed  Google Scholar 

  39. Ylanne J et al. Mutation of the cytoplasmic domain of the integrin beta 3 subunit. Differential effects on cell spreading, recruitment to adhesion plaques, endocytosis, and phagocytosis J Biol Chem 1995 270: 9550–9557

    Article  CAS  PubMed  Google Scholar 

  40. Laflamme SE, Homan SM, Bodeau AL, Mastrangelo AM . Integrin cytoplasmic domains as connectors to the cells signal transduction apparatus Matrix Biol 1997 16: 153–163

    Article  CAS  PubMed  Google Scholar 

  41. Tahiliani PD, Singh L, Auer KL, LaFlamme SE . The role of conserved amino acid motifs within the integrin beta3 cytoplasmic domain in triggering focal adhesion kinase phosphorylation J Biol Chem 1997 272: 7892–7898

    Article  CAS  PubMed  Google Scholar 

  42. Liu KY, Timmons S, Lin YZ, Hawiger J . Identification of a functionally important sequence in the cytoplasmic tail of integrin beta 3 by using cell-permeable peptide analogs Proc Natl Acad Sci USA 1996 93: 11819–11824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zimrin AB et al. Structure of platelet glycoprotein IIIa. A common subunit for two different membrane receptors J Clin Invest 1988 81: 1470–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schaack J, Langer S, Guo X . Efficient selection of recombinant adenoviruses by vectors that express beta-galactosidase J Virol 1995 69: 3920–3923

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Becker T et al. Use of recombinant adenovirus for metabolic engineering of mammalian cells. In: MG Roth (ed.) Methods in Cell Biology vol.43: Academic Press: San Diego pp 161–189

Download references

Acknowledgements

The authors wish to thank Drs M Lukashev, D Reed, V Jongeneel, R Iggo and D Rimoldi for providing reagents and cells, Mr G Bieler, O Dormond and Mrs C Paroz for technical assistance. Dr K M Müller is acknowledged for critical reading of the manuscript, and Dr F Lejeune for continuous support. This work was supported by grants from the Swiss National Science Foundation (31–52946–97 to CR and DO) and by the BCV Foundation. CR is recipient of a SCORE A fellowship award from the Swiss National Science Foundation (32–41611.911).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oguey, D., George, P. & Rüegg, C. Disruption of integrin-dependent adhesion and survival of endothelial cells by recombinant adenovirus expressing isolated β integrin cytoplasmic domains. Gene Ther 7, 1292–1303 (2000). https://doi.org/10.1038/sj.gt.3301236

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301236

Keywords

This article is cited by

Search

Quick links