Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Acquired Diseases
  • Published:

Improved safety through tamoxifen-regulated induction of cytotoxic genes delivered by Ad vectors for cancer gene therapy

Abstract

The transfer of pro-apoptotic genes to tumors is one of the most promising strategies for anticancer gene therapy. However, the use of potentially toxic genes, such as tumor suppressor genes or apoptotic genes, needs controllable transgene activation. To achieve regulation of the transgene at a desired time, we developed an adenovirus (Ad) vector, in which the apoptotic activity of the target gene has been made 4-OHT-dependent by fusion to the ligand binding-domain of the estrogen receptor (ER). For evaluation of the system in human tumor cells, we used the E2F1 gene which encodes a transcription factor that triggers massive apoptosis in several human cancers. AdER-E2F1 expressed high levels of transgene over at least 1 week. Upon activation of E2F1 by the ligand 4-hydroxy-tamoxifen (4-OHT) the ER-E2F1 fusion protein correctly translocated from the cytosol to the nucleus, transactivated E2F-dependent promoters, and rapidly induced substantial E2F1-related toxicity. Finally, experiments in nude mice showed tightly regulated tumor growth suppression in vivo. Taken together, our system represents a powerful approach for tight regulation and rapid induction of cytotoxicity as the major criteria for safe gene delivery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Paulus W et al. Self-contained teracycline-regulated retroviral vector system for gene delivery to mammalian cells J Virol 1996 70: 62–67

    CAS  PubMed  PubMed Central  Google Scholar 

  2. No D, Yao T-P, Evans RM . Ecdysone-inducible gene expression in mammalian cells and transgenic mice Proc Natl Acad Sci USA 1996 93: 3346–3351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Littlewood TD et al. A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins Nucleic Acids Res 1995 23: 1686–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vater CA et al. Induction of apoptosis by tamoxifen-activation of a p53-estrogen receptor fusion protein expressed in E1A and T24 H-ras transformed p53−/− mouse embryo fibroblasts Oncogene 1996 13: 739–748

    CAS  PubMed  Google Scholar 

  5. Fang CM, Shi C, Xu YH . Deregulated c-myc expression in quiescent CHO cells induces target gene transcription and subsequent apoptotic phenotype Cell Res 1999 9: 305–314

    Article  CAS  PubMed  Google Scholar 

  6. Vigo E et al. CDC25A phosphatase is a target of E2F and is required for efficient E2F-induced S phase Mol Cell Biol 1999 19: 6379–6395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jordan VC, Murphy CS . Endocrine pharmacology of antiestrogens as antitumor agents Endocr Rev 1990 11: 578–610

    Article  CAS  PubMed  Google Scholar 

  8. Hitt M, Addison CL, Graham FL . Human adenovirus vectors for gene transfer into mammalian cells Adv Pharmacol 1997 40: 137–205

    Article  CAS  PubMed  Google Scholar 

  9. Hunt KK et al. Adenovirus-mediated overexpression of the transcription factor E2F1 induces apoptosis in human breast and ovarian carcinoma cell lines and does not require p53 Cancer Res 1997 57: 4722–4726

    CAS  PubMed  Google Scholar 

  10. Fueyo J et al. Overexpression of E2F-1 in glioma triggers apoptosis and suppresses tumor growth in vitro and in vivo Nature Med 1998 4: 685–690

    Article  CAS  PubMed  Google Scholar 

  11. Liu T-J et al. Apoptosis induction by E2F-1 via adenoviral-mediated gene transfer results in growth suppression of head and neck squamous cell carcinoma cell lines Cancer Gene Ther 1999 6: 163–171

    Article  CAS  PubMed  Google Scholar 

  12. Gomez-Manzano C et al. Gene therapy for gliomas: p53 and E2F-1 proteins and the target of apoptosis Int J Mol Med 1999 3: 81–85

    CAS  PubMed  Google Scholar 

  13. Pützer BM et al. Combination therapy with interleukin-2 and wild-type p53 expressed by adenoviral vectors potentiates tumor regression in a murine model of breast cancer Hum Gene Ther 1998 9: 707–718

    Article  PubMed  Google Scholar 

  14. Nielsen LL et al. Recombinant E1-deleted adenovirus-mediated gene therapy for cancer: efficacy studies with p53 tumor suppressor gene and liver histology in tumor xenograft models Hum Gene Ther 1998 9: 681–694

    Article  CAS  PubMed  Google Scholar 

  15. Addison CL, Hitt M, Kunsken D, Graham FL . Comparison of the human versus murine cytomegalovirus immediate–early gene promoters for transgene expression by adenoviral vectors J Gen Virol 1997 78: 1653–1661

    Article  CAS  PubMed  Google Scholar 

  16. Pützer BM et al. Interleukin-12 and B7-1 costimulatory molecule expressed by an adenovirus vector act synergistically to facilitate tumor regression Proc Natl Acad Sci USA 1997 94: 10889–10894

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bett AJ, Haddara W, Prevec L, Graham FL . An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3 Proc Natl Acad Sci USA 1994 91: 8802–8806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hitt M, Bett AJ, Prevec L, Graham FL . Construction and propagation of human adenovirus vectors. In: Celis JE (ed) Cell Biology: A Laboratory Handbook Academic Press: San Diego 1994 479–490

    Google Scholar 

  19. Müller H et al. Induction of S-phase entry by E2F transcription factors depends on their nuclear localization Mol Cell Biol 1997 17: 5508–5520

    Article  PubMed  PubMed Central  Google Scholar 

  20. Alarcon RM et al. Modulation of c-Myc activity and apoptosis in vivo Cancer Res 1996 56: 4315–4319

    CAS  PubMed  Google Scholar 

  21. Burcin MM et al. Adenovirus-mediated regulable target gene expression in vivo Proc Natl Acad Sci USA 1999 96: 355–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kagawa S et al. A binary adenoviral vector system for expressing high levels of the proapoptotic gene bax Gene Therapy 2000 7: 75–79

    Article  CAS  PubMed  Google Scholar 

  23. Parr MJ et al. Tumor-selective transgene expression in vivo mediated by an E2F-responsive adenoviral vector Nature Med 1997 3: 1145–1149

    Article  CAS  PubMed  Google Scholar 

  24. Kowalik TF, DeGregori J, Schwarz JK, Nevins JR . E2F1 overexpression in quiescent fibroblasts leads to induction of cellular DNA synthesis and apoptosis J Virol 1995 69: 2491–2500

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Marcellus RC et al. Adenovirus type 5 early region 4 is responsible for E1A-induced p53-independent apoptosis J Virol 1996 70: 6207–6215

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sambrook J, Fritsch EF, Maniatis T . Molecular Cloning: A Laboratory Manual Cold Spring Harbor Press: Cold Spring Harbor, NY 1989 pp 1.21–1.84.

  27. Birnboim HC, Doly J . A rapid alkaline extraction procedure for screening recombinant plasmid DNA Nucleic Acids Res 1979 7: 1513–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kalejta RF, Shenk T, Beavis AJ . Use of a membrane-localized green fluorescent protein allows simultaneous identification of transfected cells and cell cycle analysis by flow cytometry Cytometry 1997 29: 286–291

    Article  CAS  PubMed  Google Scholar 

  29. Graham FL, Prevec L . Manipulation of adenovirus vectors. In: Murray EJ (ed) Methods in Molecular Biology: Gene Transfer and Expression Protocols Humana Press: Clifton, NJ 1991 109–128

    Chapter  Google Scholar 

  30. Schwarz JK et al. Expression of the E2F1 transcription factor overcomes type beta transforming growth factor-mediated growth suppression Proc Natl Acad Sci USA 1995 92: 483–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hsieh JK et al. E2F1-induced apoptosis requires DNA binding but not transactivation and is inhibited by the retinoblastoma protein through direct interaction Genes Dev 1997 11: 1840–1852

    Article  CAS  PubMed  Google Scholar 

  32. Bradford MM . A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Anal Biochem 1976 72: 248–254

    Article  CAS  PubMed  Google Scholar 

  33. Van den Hoff MJB, Moorman AFM, Lamers WH . Electroporation intracellular buffer increases cell survival Nucleic Acids Res 1992 20: 2902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bates S et al. p14ARF links the tumor suppressors RB and p53 Nature 1998 395: 124–125

    Article  CAS  PubMed  Google Scholar 

  35. Pützer BM et al. E1A is sufficient by itself to induce apoptosis independent of p53 and other adenoviral gene products Cell Death Differ 2000 7: 177–188

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A Fattaey, K Vousden, K Helin and RF Kalejta for providing the plasmids pGL3TATAbasic6xE2F, E1β-Luc, pBabeHAERE2F-1 and pCMV-GFPS. We thank S Zimmermann and M Groneberg for technical support, K Lenartz for contribution to flow cytometry analysis. We are also grateful to F Rödicker for critical reading of the manuscript. This work was supported by a grant 10–1411 from the Deutsche Krebshilfe, Mildred Scheel Stiftung (to BMP) and IFORES doctoral fellowship from the University of Essen (to FC).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pützer, B., Stiewe, T., Crespo, F. et al. Improved safety through tamoxifen-regulated induction of cytotoxic genes delivered by Ad vectors for cancer gene therapy. Gene Ther 7, 1317–1325 (2000). https://doi.org/10.1038/sj.gt.3301235

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301235

Keywords

This article is cited by

Search

Quick links