Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viral Transfer Technology
  • Published:

Growth factor enhanced retroviral gene transfer to the adult central nervous system

Abstract

The use of viral vectors for gene delivery into mammalian cells provides a new approach in the treatment of many human diseases. The first viral vector approved for human clinical trials was murine leukemia virus (MLV), which remains the most commonly used vector in clinical trials to date. However, the application of MLV vectors is limited since MLV requires cells to be actively dividing in order for transduction and therefore gene delivery to occur. This limitation precludes the use of MLV for delivering genes to the adult CNS, where very little cell division is occurring. However, we speculated that this inherent limitation of MLV may be overcome by utilizing the known mitogenic effect of growth factors on cells of the CNS. Specifically, an in vivo application of growth factor to the adult brain, if able to induce cell division, could enhance MLV-based gene transfer to the adult brain. We now show that an exogenous application of basic fibroblast growth factor induces cell division in vivo. Under these conditions, where cells of the adult brain are stimulated to divide, MLV-based gene transfer is significantly enhanced. This novel approach precludes any vector modifications and provides a simple and effective way of delivering genes to cells of the adult brain utilizing MLV-based retroviral vectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Rosenberg SA, Blaese RM, Anderson WF . The N2-TIL human gene transfer protocol Hum Gene Ther 1990 1: 73–92

    Article  Google Scholar 

  2. ORDA report: Human Gene Therapy Protocols (12/1/98) Office of Recombinant DNA activities, NIH, Bethesda, MD, 1998

  3. Anderson WF . Human gene therapy Nature 1998 392: (Suppl) 25–30

    Article  CAS  PubMed  Google Scholar 

  4. Vile RG, Russell SJ . Retroviruses as vectors Br Med Bull 1995 51: 12–30

    Article  CAS  PubMed  Google Scholar 

  5. Varmus H . Retroviruses Science 1988 240: 1427–1435

    Article  CAS  PubMed  Google Scholar 

  6. Frisch EF, Temin HM . Inhibition of viral DNA synthesis in stationary chicken embryo fibroblasts infected with avian retroviruses J Virol 1977 24: 461–469

    Google Scholar 

  7. Miller DG, Adam MA, Miller AD . Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection Molec Cell Biol 1990 10: 4239–4242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ridet JL, Privat A . Gene therapy in the central nervous system: direct versus indirect gene delivery J Neurosci Res 1995 42: 287–293

    Article  CAS  PubMed  Google Scholar 

  9. Friedmann T . Gene therapy for neurological disorders Trends Genet 1994 10: 210–214

    Article  CAS  PubMed  Google Scholar 

  10. Vescovi AL, Reynolds BA, Fraser DD, Weiss S . βFGF regulates the proliferative state of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells Neuron 1993 11: 951–966

    Article  CAS  PubMed  Google Scholar 

  11. Engel NJ, Wolswijk G . Oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells derived from adult rat spinal cord: in vitro characteristic and response to PDGF, bFGF and NT-3 Glia 1996 16: 16–26

    Article  CAS  PubMed  Google Scholar 

  12. Noble M et al. Platelet-derived growth factor promotes division and motility and inhibits premature differentiation of the oligodendrocyte/type-2 astrocyte progenitor cell Nature 1988 333: 560–562

    Article  CAS  PubMed  Google Scholar 

  13. Richardson WD . A role for platelet-derived growth factor in normal gliogenesis in the central nervous system Cell 1988 53: 309–319

    Article  CAS  PubMed  Google Scholar 

  14. Ferry N et al. Retroviral-mediated gene transfer into hepatocytes in vivo Proc Nat Acad Sci USA 1991 88: 8377–8381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bosch A et al. Proliferation induced by keratinocyte growth factor enhancers in vivo retroviral-mediated gene transfer to mouse hepatocytes J Clin Invest 1996 98: 2683–2687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Forbes SJ et al. Retroviral gene transfer to the liver in vivo during tri-iodothyronine induced hyperplasia Gene Therapy 1998 5: 552–555

    Article  CAS  PubMed  Google Scholar 

  17. Colello RJ, Clark L, King L . The cellular response of the adult mammalian CNS to growth factor application Soc Neurosci 1997 23: 1430 (Abstr.)

    Google Scholar 

  18. Pettmann B, Weibel M, Sensenbrenner M, Labourdette, G . Purification of two astroglial growth factors from bovine brain FEBS Lett 1985 189: 102–108

    Article  CAS  PubMed  Google Scholar 

  19. Ray J, Gage FH . Spinal cord neuroblasts proliferate in response to fibroblast growth factor J Neurosci 1994 14: 3548–3564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. King LA et al. Growth factor enhanced retroviral gene transfer to the adult CNS Soc Neurosci 1999 131.19: 329 (Abstr.)

    Google Scholar 

  21. Gratzner HG . Monoclonal antibody to 5-bromo-and 5-iodeoxyuridine: a new reagent for detection of DNA replication Science 1982 218: 474–475

    Article  CAS  PubMed  Google Scholar 

  22. Miller MW, Nowakowski RS . Use of bromodeoxyuridine-immunohistochemistry to examine the proliferation, migration and time or origin of cells in the central nervous system Brain Res 1988 457: 44–52

    Article  CAS  PubMed  Google Scholar 

  23. Gomez-Pinilla F, Vu L, Cotman CW . Regulation of astrocyte proliferation by FGF-2 and heparan sulfate in vivo J Neurosci 1995 15: 2021–2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Amat JA, Ishiguro H, Nakamura K, Norton WT . Phenotype diversity and kinetics of proliferating microglia and astrocytes following cortical stab wounds Glia 1996 16: 368–382

    Article  CAS  PubMed  Google Scholar 

  25. Mori K, Yamagami S, Kawakita Y . Thymidine metabolism and deoxyribonucleic acid synthesis in the developing rat brain J Neurochem 1970 17: 835–843

    Article  CAS  PubMed  Google Scholar 

  26. Dahl D, Bignami A . Immunogenic properties of the glial fibrillary acidic protein Brain Res 1976 116: 150–157

    Article  CAS  PubMed  Google Scholar 

  27. Bignami A, Dahl D . Localization of vimentin, the nonspecific intermediate filament protein in embryonal glia Dev Biol 1982 91: 286–295

    Article  CAS  PubMed  Google Scholar 

  28. Thomas WE . Brain macrophages: evaluation of microglia and their functions Brain Res Rev 1992 17: 61–74

    Article  CAS  PubMed  Google Scholar 

  29. Saranat HB, Nochlin D, Born DE . Neuronal nuclear antigen (NeuN): a marker of neuronal maturation in early human fetal nervous system Brain Dev 1998 20: 88–94

    Article  Google Scholar 

  30. Trapnell BC, Gorziglia M . Gene therapy using adenoviral vectors Curr Opin Biotechnol 1994 5: 617–625

    Article  CAS  PubMed  Google Scholar 

  31. Dai Y et al. Cellular and humoral immune responses to adenoviral vectors containing factor IX gene: tolerization of factor IX and vector antigens allows for long-term expression Proc Natl Acad Sci USA 1995 92: 1401–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Byrnes AP, Rusby JE, Wood MJA, Charlton HM . Adenovirus gene transfer causes inflammation in the brain Neurosci 1995 66: 1015–1024

    Article  CAS  Google Scholar 

  33. Kaplitt MG et al. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain Nat Genet 1994 8: 148–154

    Article  CAS  PubMed  Google Scholar 

  34. Kremer EJ, Perricaudet M . Adenovirus and adeno-associated virus mediated gene transfer Br Med Bull 1995 51: 31–44

    Article  CAS  PubMed  Google Scholar 

  35. Verma IM, Somia N . Gene therapy – promises, problems, and prospects Nature 1997 389: 239–242

    Article  CAS  PubMed  Google Scholar 

  36. Chen X, Schmidt MC, Goins WF, Glorioso J . Two herpes simplex virus type 1 latency-active promoters differ in their contributions to latency-associated transcript expression during lytic and latent infections J Virol 1995 12: 7899–7908

    Google Scholar 

  37. Karpati G, Lochmuller H, Nalbantoglu J, Durham H . The principles of gene therapy for the nervous system Trends Neurosci 1996 19: 49–54

    Article  CAS  PubMed  Google Scholar 

  38. Krisky DM et al. Deletion of multiple immediate–early genes from herpes simplex virus reduces cytotoxicity and permits long-term expression in neurons Gene Therapy 1998 5: 1593–1603

    Article  CAS  PubMed  Google Scholar 

  39. Lewis P, Hensel M, Emerman M . Human immunodeficiency virus infection of cells arrested in the cell cycle EMBO J 1992 11: 3053–3058 (erratum, 11: 4249)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Naldini L et al. In vivo gene delivery and stable transduction of non-dividing cells by a lentiform vector Science 1996 272: 263–267

    Article  CAS  PubMed  Google Scholar 

  41. Blomer U et al. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector J Virol 1997 71: 6641–6649

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mitrophanous K et al. Stable gene transfer to the nervous system using a non-primate lentiviral vector Gene Therapy 1999 6: 1808–1818

    Article  CAS  PubMed  Google Scholar 

  43. Bukovsky AA, Song JP, Naldini L . Interaction of human immunodeficiency virus-derived vectors with wild-type virus in transduced cells J Virol 1999 73: 7087–7092

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Poeschla EM, Wong-Staal F, Looney DJ . Efficient transduction of non-dividing cells by feline immunodeficiency virus lentiviral vectors Nature Med 1998 4: 354–357

    Article  CAS  PubMed  Google Scholar 

  45. Dull T et al. A third generation lentivirus vector with a conditional packaging system J Virol 1998 72: 8463–8471

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zufferey R et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery J Virol 1998 72: 9873–9880

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bartz SR, Vodicka MA . Production of high-titre human immunodeficiency virus type 1 pseudotyped with vesicular stomatitis virus glycoprotein Methods 1997 12: 337–342

    Article  CAS  PubMed  Google Scholar 

  48. Snyder EY, Senut M . The use of nonneuronal cells for gene delivery Neurobiol Dis 1997 4: 69–102

    Article  CAS  PubMed  Google Scholar 

  49. Gage FH, Kawaja MD, Fisher LJ . Genetically modified cells: applications for intracerebral grafting Trends Neurosci 1991 14: 328–333

    Article  CAS  PubMed  Google Scholar 

  50. Calvo JL, Carbonell AL, Boya J . Co-expression of glial fibrillary protein and vimentin in reactive astrocytes following brain injury in rats Brain Res 1991 566: 333–336

    Article  CAS  PubMed  Google Scholar 

  51. Morrison RS, De Vellis J . Growth of purified astrocytes in a chemically defined medium Proc Natl Acad Sci USA 1981 78: 7205–7209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Menon VK, Landerholm TE . Intralesion injection of basic fibroblast growth factor alters glial reactivity to neural trauma Exp Neurol 1994 129: 142–154

    Article  CAS  PubMed  Google Scholar 

  53. Mocchetti I, Wrathall JR . Neurotrophic factors in the central nervous system trauma J Neurotrauma 1995 12: 853–870

    Article  CAS  PubMed  Google Scholar 

  54. Anchan RM et al. EGF and TGF-alpha stimulate retinal neuroepithelial cell proliferation in vitro Neuron 1991 6: 923–936

    Article  CAS  PubMed  Google Scholar 

  55. Kilpatrick TJ, Bartlett PF . Cloned multipotential precursors from the mouse cerebrum require FGF-2, whereas glial restricted precursors are stimulated with either FGF-2 or EGF J Neurosci 1995 15: 3653–3661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lundberg C, Horellou P, Mallet J, Bjorklund A . Generation of dopa-producing astrocytes by retroviral transduction of the human tyrosine hydroxylase gene: in vitro characterization and in vivo effects of the rat Parkinson model Exp Neurol 1996 139: 39–53

    Article  CAS  PubMed  Google Scholar 

  57. Kirik D, Rosenblad C, Bjorkland A . Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat Exp Neurol 1998 152: 259–277

    Article  CAS  PubMed  Google Scholar 

  58. Rapraeger ASC, Krufka A, Olwin BB . Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation Science 1991 252: 1705–1708

    Article  CAS  PubMed  Google Scholar 

  59. Yayon A et al. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor Cell 1991 64: 841–848

    Article  CAS  PubMed  Google Scholar 

  60. Rogers AW . Techniques in Autoradiography Elsevier/North-Holland Biomedical Press: Amsterdam 1967

    Google Scholar 

  61. Soneoka Y et al. A transient three-plasmid expression system for the production of high titer retroviral vectors Nucleic Acids Res 1995 23: 628–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim VN, Mitrophanous K, Kingsman SM, Kingsman AJ . Minimal requirement for lentivirus vector based on human immunodeficiency virus type 1 J Virol 1998 72: 811–816

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Jeffress Trust Foundation and Oxford BioMedica.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, L., Mitrophanous, K., Clark, L. et al. Growth factor enhanced retroviral gene transfer to the adult central nervous system. Gene Ther 7, 1103–1111 (2000). https://doi.org/10.1038/sj.gt.3301198

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301198

Keywords

This article is cited by

Search

Quick links