Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Stable gene transfer to the nervous system using a non-primate lentiviral vector

Abstract

We have constructed a non-primate lentiviral vector system based on the equine infectious anaemia virus (EIAV). This system is able to transduce both dividing and non-dividing cells, including primary cultured hippocampal neurons and neurons and glia in the adult rat central nervous system (CNS), at efficiencies comparable with HIV-based vectors. We demonstrate that the only EIAV proteins required for this activity are gag/pol and that the only accessory protein required for vector production is rev. In addition, we show that the pol encoded dUTPase activity that is found in all non-primate lentiviruses is not required. The vectors can be pseudotyped with a range of envelopes including rabies G and MLV 4070A and can be concentrated to high titres. The ability of EIAV to infect mitotically inactive cells makes this vector an attractive alternative to the immunodeficiency viruses for gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Fields BN, Knipe DM, Howley PM . In: Chanock RM et al (eds). Fields Virology, 3rd edn, Vol. 2 Lippincott–Raven Publishers: Philadelphia 1996 pp 1977–1996

    Google Scholar 

  2. Lever AML . HIV and other lentivirus-based vectors Gene Therapy 1996 3: 470–471

    CAS  PubMed  Google Scholar 

  3. Naldini L et al. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector Proc Natl Acad Sci USA 1996 93: 11382–11388

    Article  CAS  Google Scholar 

  4. Naldini L et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector Science 1996 272: 263–267

    Article  CAS  Google Scholar 

  5. Kim VN, Mitrophanous K, Kingsman SM, Kingsman AJ . Minimal requirement for a lentivirus vector based on human immunodeficiency virus type 1 J Virol 1998 72: 811–816

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zufferey R et al. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo Nat Biotechnol 1997 15: 871–875

    Article  CAS  Google Scholar 

  7. Olsen JC . Gene transfer vectors derived from equine infectious anemia virus Gene Therapy 1998 5: 1481–1487

    Article  CAS  Google Scholar 

  8. Poeschla EM, Wong-Staal F, Looney DJ . Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors Nat Med 1998 4: 354–357

    Article  CAS  Google Scholar 

  9. Clabough DL et al. Immune-mediated thrombocytopenia in horses infected with equine infectious anemia virus J Virol 1991 65: 6242–6251

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Maury W . Monocyte maturation controls expression of equine infectious anemia virus J Virol 1994 68: 6270–6279

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Maury W . Regulation of equine infectious anemia virus expression J Biomed Sci 1998 5: 11–23

    Article  CAS  Google Scholar 

  12. Maury WJ, Carpenter S, Graves K, Chesebro B . Cellular and viral specificity of equine infectious anemia virus Tat transactivation Virology 1994 200: 632–642

    Article  CAS  Google Scholar 

  13. Derse D, Newbold SH . Mutagenesis of EIAV TAT reveals structural features essential for transcriptional activation and TAR element recognition Virology 1993 194: 530–536

    Article  CAS  Google Scholar 

  14. Martarano L, Stephens R, Rice N, Derse D . Equine infectious anemia virus trans-regulatory protein Rev controls viral mRNA stability, accumulation, and alternative splicing J Virol 1994 68: 3102–3111

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Belshan M et al. Biological characterization of Rev variation in equine infectious anemia virus J Virol 1998 72: 4421–4426

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Schiltz RL et al. Equine infectious anemia virus gene expression: characterization of the RNA splicing pattern and the protein products encoded by open reading frames S1 and S2 J Virol 1992 66: 3455–3465

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Elder JH et al. Distinct subsets of retroviruses encode dUTPase J Virol 1992 66: 1791–1794

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lichtenstein DL et al. Replication in vitro and in vivo of an equine infectious anemia virus mutant deficient in dUTPase activity J Virol 1995 69: 2881–2888

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Steagall WK et al. Incorporation of uracil into viral DNA correlates with reduced replication of EIAV in macrophages Virology 1995 210: 302–313

    Article  CAS  Google Scholar 

  20. Threadgill DS et al. Characterization of equine infectious anemia virus dUTPase: growth properties of a dUTPase-deficient mutant J Virol 1993 67: 2592–2600

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Vertessy BG et al. Specific derivatization of the active site tyrosine in dUTPase perturbs ligand binding to the active site Biochem Biophys Res Commun 1996 219: 294–300

    Article  CAS  Google Scholar 

  22. Turelli P et al. Replication properties of dUTPase-deficient mutants of caprine and ovine lentiviruses J Virol 1996 70: 1213–1217

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Turelli P et al. dUTPase-minus caprine arthritis-encephalitis virus is attenuated for pathogenesis and accumulates G-to-A substitutions J Virol 1997 71: 4522–4530

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Payne SL et al. Characterization of infectious molecular clones of equine infectious anaemia virus J Gen Virol 1994 75: 425–429

    Article  CAS  Google Scholar 

  25. Soneoka Y et al. A transient three-plasmid expression system for the production of high titer retroviral vectors Nucleic Acids Res 1995 23: 628–633

    Article  CAS  Google Scholar 

  26. Montelaro RC, Parekh B, Orrego A, Issel CJ . Antigenic variation during persistent infection by equine infectious anemia virus, a retrovirus J Biol Chem 1984 259: 10539–10544

    CAS  PubMed  Google Scholar 

  27. Burns JC et al. Vesicular stomatitis virus G glycoportein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells Proc Natl Acad Sci USA 1993 90: 8033–8037

    Article  CAS  Google Scholar 

  28. Mullen RJ, Buck CR, Smith AM . NeuN, a neuronal specific nuclear protein in vertebrates Development 1992 116: 201–211

    CAS  PubMed  Google Scholar 

  29. Lewis PF, Emerman M . Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus J Virol 1994 68: 510–516

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lewis P, Hensel M, Emerman M . Human immunodeficiency virus infection of cells arrested in the cell cycle EMBO J 1992 11: 3053–3058

    Article  CAS  Google Scholar 

  31. Bukrinsky MI et al. A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells Nature 1993 365: 666–669

    Article  CAS  Google Scholar 

  32. von Schwedler U, Kornbluth RS, Trono D . The nuclear localization signal of the matrix protein of human immunodeficiency virus type 1 allows the establishment of infection in macrophages and quiescent T lymphocytes Proc Natl Acad Sci USA 1994 91: 6992–6996

    Article  CAS  Google Scholar 

  33. Gallay P et al. Role of the karyopherin pathway in human immunodeficiency virus type 1 nuclear import J Virol 1996 70: 1027–1032

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gallay P, Hope T, Chin D, Trono D . HIV-1 infection of nondividing cells through the recognition of integrase by the importin/karyopherin pathway Proc Natl Acad Sci USA 1997 94: 9825–9830

    Article  CAS  Google Scholar 

  35. Heinzinger NK et al. The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells Proc Natl Acad Sci USA 1994 91: 7311–7315

    Article  CAS  Google Scholar 

  36. Li F, Puffer BA, Montelaro RC . The S2 gene of equine infectious anemia virus is dispensable for viral replication in vitro J Virol 1998 72: 8344–8348

    CAS  PubMed  PubMed Central  Google Scholar 

  37. McIntosh EM, Haynes RH . HIV and human endogenous retroviruses: an hypothesis with therapeutic implications Acta Biochim Pol 1996 43: 583–592

    CAS  PubMed  Google Scholar 

  38. Lerner DL et al. Increased mutation frequency of feline immunodeficiency virus lacking functional deoxyuridine-triphosphatase Proc Natl Acad Sci USA 1995 92: 7408–7484

    Google Scholar 

  39. Fielding AK et al. Inverse targeting of retroviral vectors: selective gene transfer in a mixed population of hematopoietic and nonhematopoietic cells Blood 1998 91: 1802–1809

    CAS  PubMed  Google Scholar 

  40. Martin F et al. Retroviral vector targeting to melanoma cells by single-chain antibody incorporation in envelope Hum Gene Ther 1998 9: 737–746

    Article  CAS  Google Scholar 

  41. Bray M et al. A small element from the Mason–Pfizer monkey virus genome makes human immunodeficiency virus type 1 expression and replication Rev-independent Proc Natl Acad Sci USA 1994 91: 1256–1260

    Article  CAS  Google Scholar 

  42. Srinivasakumar N et al. The effect of viral regulatory protein expression on gene delivery by human immunodeficiency virus type 1 vectors produced in stable packaging cell lines J Virol 1997 71: 5841–5848

    CAS  PubMed  PubMed Central  Google Scholar 

  43. von Gegerfelt A, Felber BK . Replacement of posttranscriptional regulation in SIVmac239 generated a Rev-independent infectious virus able to propagate in rhesus peripheral blood mononuclear cells Virology 1997 232: 291–299

    Article  CAS  Google Scholar 

  44. Albini A et al. Angiogenic potential in vivo by Kaposi’s sarcoma cell-free supernatants and HIV-1 tat product: inhibition of KS-like lesions by tissue inhibitor of metalloproteinase-2 AIDS 1994 8: 1237–1244

    Article  CAS  Google Scholar 

  45. Barillari G, Gendelman R, Gallo RC, Ensoli B . The Tat protein of human immunodeficiency virus type 1, a growth factor for AIDS Kaposi sarcoma and cytokine-activated vascular cells, induces adhesion of the same cell types by using integrin receptors recognizing the RGD amino acid sequence Proc Natl Acad Sci USA 1993 90: 7941–7945

    Article  CAS  Google Scholar 

  46. Albini A et al. Angiogenic properties of human immunodeficiency virus type 1 Tat protein Proc Natl Acad SCi USA 1995 92: 4838–4842

    Article  CAS  Google Scholar 

  47. Albini A et al. HIV-tat protein is a heparin-binding angiogenic growth factor Oncogene 1996 12: 289–297

    CAS  PubMed  Google Scholar 

  48. Jowett JB et al. The human immunodeficiency virus type 1 vpr gene arrests infected T cells in the G2 + M phase of the cell cycle J Virol 1995 69: 6304–6313

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wood MJ et al. Inflammatory effects of gene transfer into the CNS with defective HSV-1 vectors Gene Therapy 1994 1: 283–291

    CAS  PubMed  Google Scholar 

  50. Zeman W, Innes JRM . Craigie’s Neuroanatomy of the Rat Academic Press: New York, London 1963

    Google Scholar 

Download references

Acknowledgements

We thank Dr Harry M Charlton, at the Anatomy Department of Oxford University for his contribution to surgical procedures as well as Huw D Thomas of Leica Microsystems UK Ltd, for confocal microscopy.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitrophanous, K., Yoon, S., Rohll, J. et al. Stable gene transfer to the nervous system using a non-primate lentiviral vector. Gene Ther 6, 1808–1818 (1999). https://doi.org/10.1038/sj.gt.3301023

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301023

Keywords

This article is cited by

Search

Quick links