Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Gene supplementation therapy for recessive forms of inherited retinal dystrophies

Abstract

Over the last decade, gene supplementation therapy for inherited retinal degeneration has come of age. Early proof-of-concept studies in animal models of disease showed modest, but genuine improvements in retinal function and/or survival. Further development of the vectors used for gene transfer to the retina has led to better treatment efficacy in a wide variety of animal models, leading in 2008 to the initiation of three clinical trials for Leber congenital amaurosis caused by retinal pigment epithelium 65 deficiency. The results from these trials suggest that the treatment of inherited retinal dystrophy by gene therapy can be safe and effective. Here, we examine the progress of gene supplementation therapy in the retina, and discuss the potential for using gene therapy to treat different forms of inherited retinal degeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. McCarty DM, Young Jr SM, Samulski RJ . Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu Rev Genet 2004; 38: 819–845.

    Article  CAS  PubMed  Google Scholar 

  2. Yanez-Munoz RJ, Balaggan KS, MacNeil A, Howe SJ, Schmidt M, Smith AJ et al. Effective gene therapy with nonintegrating lentiviral vectors. Nat Med 2006; 12: 348–353.

    Article  CAS  PubMed  Google Scholar 

  3. Andrieu-Soler C, Bejjani RA, de Bizemont T, Normand N, BenEzra D, Behar-Cohen F . Ocular gene therapy: a review of nonviral strategies. Mol Vis 2006; 12: 1334–1347.

    CAS  PubMed  Google Scholar 

  4. Baum C, Kustikova O, Modlich U, Li Z, Fehse B . Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum Gene Ther 2006; 17: 253–263.

    Article  CAS  PubMed  Google Scholar 

  5. Gal A, Li Y, Thompson DA, Weir J, Orth U, Jacobson SG et al. Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat Genet 2000; 26: 270–271.

    Article  CAS  PubMed  Google Scholar 

  6. Gu SM, Thompson DA, Srikumari CR, Lorenz B, Finckh U, Nicoletti A et al. Mutations in RPE65 cause autosomal recessive childhood-onset severe retinal dystrophy. Nat Genet 1997; 17: 194–197.

    Article  CAS  PubMed  Google Scholar 

  7. Marlhens F, Bareil C, Griffoin JM, Zrenner E, Amalric P, Eliaou C et al. Mutations in RPE65 cause Leber's congenital amaurosis. Nat Genet 1997; 17: 139–141.

    Article  CAS  PubMed  Google Scholar 

  8. den Hollander AI, Davis J, van der Velde-Visser SD, Zonneveld MN, Pierrottet CO, Koenekoop RK et al. CRB1 mutation spectrum in inherited retinal dystrophies. Hum Mutat 2004; 24: 355–369.

    Article  CAS  PubMed  Google Scholar 

  9. van Rossum AG, Aartsen WM, Meuleman J, Klooster J, Malysheva A, Versteeg I et al. Pals1/Mpp5 is required for correct localization of Crb1 at the subapical region in polarized Muller glia cells. Hum Mol Genet 2006; 15: 2659–2672.

    Article  CAS  PubMed  Google Scholar 

  10. Molday LL, Hicks D, Sauer CG, Weber BH, Molday RS . Expression of X-linked retinoschisis protein RS1 in photoreceptor and bipolar cells. Invest Ophthalmol Vis Sci 2001; 42: 816–825.

    CAS  PubMed  Google Scholar 

  11. Bennett J, Wilson J, Sun D, Forbes B, Maguire A . Adenovirus vector-mediated in vivo gene transfer into adult murine retina. Invest Ophthalmol Vis Sci 1994; 35: 2535–2542.

    CAS  PubMed  Google Scholar 

  12. Miyoshi H, Takahashi M, Gage FH, Verma IM . Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc Natl Acad Sci USA 1997; 94: 10319–10323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cheng L, Chaidhawangul S, Wong-Staal F, Gilbert J, Poeschla E, Toyoguchi M et al. Human immunodeficiency virus type 2 (HIV-2) vector-mediated in vivo gene transfer into adult rabbit retina. Curr Eye Res 2002; 24: 196–201.

    Article  PubMed  Google Scholar 

  14. Chen ZY, He CY, Meuse L, Kay MA . Silencing of episomal transgene expression by plasmid bacterial DNA elements in vivo. Gene Therapy 2004; 11: 856–864.

    Article  CAS  PubMed  Google Scholar 

  15. Reichel MB, Ali RR, Thrasher AJ, Hunt DM, Bhattacharya SS, Baker D . Immune responses limit adenovirally mediated gene expression in the adult mouse eye. Gene Therapy 1998; 5: 1038–1046.

    Article  CAS  PubMed  Google Scholar 

  16. Kumar-Singh R, Farber DB . Encapsidated adenovirus mini-chromosome-mediated delivery of genes to the retina: application to the rescue of photoreceptor degeneration. Hum Mol Genet 1998; 7: 1893–1900.

    Article  CAS  PubMed  Google Scholar 

  17. Chen ZY, He CY, Ehrhardt A, Kay MA . Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol Ther 2003; 8: 495–500.

    Article  CAS  PubMed  Google Scholar 

  18. Ali RR, Reichel MB, Thrasher AJ, Levinsky RJ, Kinnon C, Kanuga N et al. Gene transfer into the mouse retina mediated by an adeno-associated viral vector. Hum Mol Genet 1996; 5: 591–594.

    Article  CAS  PubMed  Google Scholar 

  19. Ali RR, Reichel MB, De Alwis M, Kanuga N, Kinnon C, Levinsky RJ et al. Adeno-associated virus gene transfer to mouse retina. Hum Gene Ther 1998; 9: 81–86.

    Article  CAS  PubMed  Google Scholar 

  20. Bennett J, Duan D, Engelhardt JF, Maguire AM . Real-time, noninvasive in vivo assessment of adeno-associated virus-mediated retinal transduction. Invest Ophthalmol Vis Sci 1997; 38: 2857–2863.

    CAS  PubMed  Google Scholar 

  21. Bainbridge JWB, Mistry A, Schlichtenbrede FC, Smith A, Broderick C, De Alwis M et al. Stable rAAV-mediated transduction of rod and cone photoreceptors in the canine retina. Gene Therapy 2003; 10: 1336–1344.

    Article  CAS  PubMed  Google Scholar 

  22. Mancuso K, Hendrickson AE, Connor Jr TB, Mauck MC, Kinsella JJ, Hauswirth WW et al. Recombinant adeno-associated virus targets passenger gene expression to cones in primate retina. J Opt Soc Am A Opt Image Sci Vis 2007; 24: 1411–1416.

    Article  PubMed  Google Scholar 

  23. Sarra GM, Stephens C, Schlichtenbrede FC, Bainbridge JW, Thrasher AJ, Luthert PJ et al. Kinetics of transgene expression in mouse retina following sub-retinal injection of recombinant adeno-associated virus. Vision Res 2002; 42: 541–549.

    Article  CAS  PubMed  Google Scholar 

  24. Auricchio A . Pseudotyped AAV vectors for constitutive and regulated gene expression in the eye. Vision Res 2003; 43: 913–918.

    Article  CAS  PubMed  Google Scholar 

  25. Le Meur G, Weber M, Pereon Y, Mendes-Madeira A, Nivard D, Deschamps JY et al. Postsurgical assessment and long-term safety of recombinant adeno-associated virus-mediated gene transfer into the retinas of dogs and primates. Arch Ophthalmol 2005; 123: 500–506.

    Article  CAS  PubMed  Google Scholar 

  26. Allocca M, Mussolino C, Garcia-Hoyos M, Sanges D, Iodice C, Petrillo M et al. Novel adeno-associated virus serotypes efficiently transduce murine photoreceptors. J Virol 2007; 81: 11372–11380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Natkunarajah M, Trittibach P, McIntosh J, Duran Y, Barker SE, Smith AJ et al. Assessment of ocular transduction using single-stranded and self-complementary recombinant adeno-associated virus serotype 2/8. Gene Therapy 2008; 15: 463–467.

    Article  CAS  PubMed  Google Scholar 

  28. Petrs-Silva H, Dinculescu A, Li Q, Min SH, Chiodo V, Pang JJ et al. High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors. Mol Ther 2009; 17: 463–471.

    Article  CAS  PubMed  Google Scholar 

  29. Petrs-Silva H, Dinculescu A, Li Q, Deng WT, Pang JJ, Min SH et al. Novel properties of tyrosine-mutant AAV2 vectors in the mouse retina. Mol Ther 2011; 19: 293–301.

    Article  CAS  PubMed  Google Scholar 

  30. Li Q, Miller R, Han PY, Pang J, Dinculescu A, Chiodo V et al. Intraocular route of AAV2 vector administration defines humoral immune response and therapeutic potential. Mol Vis 2008; 14: 1760–1769.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Barker SE, Broderick CA, Robbie SJ, Duran Y, Natkunarajah M, Buch P et al. Subretinal delivery of AAV2 results in minimal immune responses that allow repeat vector administration in immunocompetent mice. J Gene Med 2009; 11: 486–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Annear MJ, Bartoe JT, Barker SE, Smith AJ, Curran PG, Bainbridge JW et al. Gene therapy in the second eye of RPE65-deficient dogs improves retinal function. Gene Therapy 2011; 18: 53–61.

    Article  CAS  PubMed  Google Scholar 

  33. Vandenberghe LH, Auricchio A . Novel adeno-associated viral vectors for retinal gene therapy. Gene Therapy; e-pub ahead of print 13 October 2011; doi:10.1038/gt.2011.151.

    Article  CAS  PubMed  Google Scholar 

  34. Bennett J, Tanabe T, Sun D, Zeng Y, Kjeldbye H, Gouras P et al. Photoreceptor cell rescue in retinal degeneration (rd) mice by in vivo Gene Therapyapy. Nat Med 1996; 2: 649–654.

    Article  CAS  PubMed  Google Scholar 

  35. Jomary C, Vincent KA, Grist J, Neal MJ, Jones SE . Rescue of photoreceptor function by AAV-mediated gene transfer in a mouse model of inherited retinal degeneration. Gene Therapy 1997; 4: 683–690.

    Article  CAS  PubMed  Google Scholar 

  36. Bennett J, Zeng Y, Bajwa R, Klatt L, Li Y, Maguire AM . Adenovirus-mediated delivery of rhodopsin-promoted bcl-2 results in a delay in photoreceptor cell death in the rd/rd mouse. Gene Therapy 1998; 5: 1156–1164.

    Article  CAS  PubMed  Google Scholar 

  37. Takahashi M, Miyoshi H, Verma IM, Gage FH . Rescue from photoreceptor degeneration in the rd mouse by human immunodeficiency virus vector-mediated gene transfer. J Virol 1999; 73: 7812–7816.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ali RR, Sarra GM, Stephens C, Alwis MD, Bainbridge JW, Munro PM et al. Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy. Nat Genet 2000; 25: 306–310.

    Article  CAS  PubMed  Google Scholar 

  39. Sarra GM, Stephens C, De Alwis M, Bainbridge JW, Smith AJ, Thrasher AJ et al. Gene replacement therapy in the retinal degeneration slow (rds) mouse: the effect on retinal degeneration following partial transduction of the retina. Hum Mol Genet 2001; 10: 2353–2361.

    Article  CAS  PubMed  Google Scholar 

  40. Schlichtenbrede FC, Smith AJ, Bainbridge JW, Thrasher AJ, Salt TE, Ali RR . Improvement of neuronal visual responses in the superior colliculus in Prph2(Rd2/Rd2) mice following gene therapy. Mol Cell Neurosci 2004; 25: 103–110.

    Article  CAS  PubMed  Google Scholar 

  41. Acland GM, Aguirre GD, Ray J, Zhang Q, Aleman TS, Cideciyan AV et al. Gene Therapy restores vision in a canine model of childhood blindness. Nat Genet 2001; 28: 92–95.

    CAS  PubMed  Google Scholar 

  42. Narfstrom K, Katz ML, Bragadottir R, Seeliger M, Boulanger A, Redmond TM et al. Functional and structural recovery of the retina after gene therapy in the RPE65 null mutation dog. Invest Ophthalmol Vis Sci 2003; 44: 1663–1672.

    Article  PubMed  Google Scholar 

  43. Acland GM, Aguirre GD, Bennett J, Aleman TS, Cideciyan AV, Bennicelli J et al. Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther 2005; 12: 1072–1082.

    Article  CAS  PubMed  Google Scholar 

  44. Narfstrom K, Seeliger M, Lai CM, Vaegan Katz M, Rakoczy EP et al. Morphological aspects related to long-term functional improvement of the retina in the 4 years following rAAV-mediated gene transfer in the RPE65 null mutation dog. Adv Exp Med Biol 2008; 613: 139–146.

    Article  PubMed  Google Scholar 

  45. Le Meur G, Stieger K, Smith AJ, Weber M, Deschamps JY, Nivard D et al. Restoration of vision in RPE65-deficient Briard dogs using an AAV serotype 4 vector that specifically targets the retinal pigmented epithelium. Gene Therapy 2006; 14: 292–303.

    Article  CAS  PubMed  Google Scholar 

  46. Roman AJ, Boye SL, Aleman TS, Pang JJ, McDowell JH, Boye SE et al. Electroretinographic analyses of Rpe65-mutant rd12 mice: developing an in vivo bioassay for human gene therapy trials of Leber congenital amaurosis. Mol Vis 2007; 13: 1701–1710.

    CAS  PubMed  Google Scholar 

  47. Bennicelli J, Wright JF, Komaromy A, Jacobs JB, Hauck B, Zelenaia O et al. Reversal of blindness in animal models of leber congenital amaurosis using optimized AAV2-mediated gene transfer. Mol Ther 2008; 16: 458–465.

    Article  CAS  PubMed  Google Scholar 

  48. Bainbridge JWB, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K et al. Effect of gene therapy on visual function in Leber's congenital amaurosis. N Engl J Med 2008; 358: 2231–2239.

    Article  CAS  PubMed  Google Scholar 

  49. Maguire AM, Simonelli F, Pierce EA, Pugh Jr EN, Mingozzi F, Bennicelli J et al. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N Engl J Med 2008; 358: 2240–2248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hauswirth W, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L et al. Phase I trial of Leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results. Hum Gene Ther 2008; 19: 979–990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Simonelli F, Maguire AM, Testa F, Pierce EA, Mingozzi F, Bennicelli JL et al. Gene therapy for Leber's congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther 2010; 18: 643–650.

    Article  CAS  PubMed  Google Scholar 

  52. Cideciyan AV, Aleman TS, Boye SL, Schwartz SB, Kaushal S, Roman AJ et al. Human Gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci USA 2008; 105: 15112–15117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. D’Cruz PM, Yasumura D, Weir J, Matthes MT, Abderrahim H, LaVail MM et al. Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet 2000; 9: 645–651.

    Article  PubMed  Google Scholar 

  54. Vollrath D, Feng W, Duncan JL, Yasumura D, D’Cruz PM, Chappelow A et al. Correction of the retinal dystrophy phenotype of the RCS rat by viral gene transfer of Mertk. Proc Natl Acad Sci USA 2001; 98: 12584–12589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Smith AJ, Schlichtenbrede FC, Tschernutter M, Bainbridge JW, Thrasher AJ, Ali RR . AAV-mediated gene transfer slows photoreceptor loss in the RCS rat model of retinitis pigmentosa. Mol Ther 2003; 8: 188–195.

    Article  CAS  PubMed  Google Scholar 

  56. Tschernutter M, Schlichtenbrede FC, Howe S, Balaggan KS, Munro PM, Bainbridge JW et al. Long-term preservation of retinal function in the RCS rat model of retinitis pigmentosa following lentivirus-mediated gene therapy. Gene Therapy 2005; 12: 694–701.

    Article  CAS  PubMed  Google Scholar 

  57. Dryja TP, Adams SM, Grimsby JL, McGee TL, Hong DH, Li T et al. Null RPGRIP1 alleles in patients with Leber congenital amaurosis. Am J Hum Genet 2001; 68: 1295–1298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pawlyk BS, Smith AJ, Buch PK, Adamian M, Hong DH, Sandberg MA et al. Gene replacement therapy rescues photoreceptor degeneration in a murine model of Leber congenital amaurosis lacking RPGRIP. Invest Ophthalmol Vis Sci 2005; 46: 3039–3045.

    Article  PubMed  Google Scholar 

  59. Boye SE, Boye SL, Pang J, Ryals R, Everhart D, Umino Y et al. Functional and behavioral restoration of vision by gene therapy in the guanylate cyclase-1 (GC1) knockout mouse. PLoS One 2010; 5: e11306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mihelec M, Pearson RA, Robbie SJ, Buch PK, Azam SA, Bainbridge JW et al. Long-term preservation of cones and improvement in visual function following gene therapy in a mouse model of Leber congenital amaurosis (LCA) caused by GC1 deficiency. Hum Gene Therapy 2011; e-pub ahead of print 10 August 2011: doi:10.1089/hum.2011.069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pang JJ, Boye SL, Kumar A, Dinculescu A, Deng W, Li J et al. AAV-mediated gene therapy for retinal degeneration in the rd10 mouse containing a recessive PDEbeta mutation. Invest Ophthalmol Vis Sci 2008; 49: 4278–4283.

    Article  PubMed  Google Scholar 

  62. McLaughlin ME, Sandberg MA, Berson EL, Dryja TP . Recessive mutations in the gene encoding the beta-subunit of rod phosphodiesterase in patients with retinitis pigmentosa. Nat Genet 1993; 4: 130–134.

    Article  CAS  PubMed  Google Scholar 

  63. Liu X, Bulgakov OV, Wen XH, Woodruff ML, Pawlyk B, Yang J et al. AIPL1, the protein that is defective in Leber congenital amaurosis, is essential for the biosynthesis of retinal rod cGMP phosphodiesterase. Proc Natl Acad Sci USA 2004; 101: 13903–13908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dharmaraj S, Leroy BP, Sohocki MM, Koenekoop RK, Perrault I, Anwar K et al. The phenotype of Leber congenital amaurosis in patients with AIPL1 mutations. Arch Ophthalmol 2004; 122: 1029–1037.

    Article  CAS  PubMed  Google Scholar 

  65. Dyer MA, Donovan SL, Zhang J, Gray J, Ortiz A, Tenney R et al. Retinal degeneration in Aipl1-deficient mice: a new genetic model of Leber congenital amaurosis. Brain Res Mol Brain Res 2004; 132: 208–220.

    Article  CAS  PubMed  Google Scholar 

  66. Tan MH, Smith AJ, Pawlyk B, Xu X, Liu X, Bainbridge JB et al. Gene therapy for retinitis pigmentosa and Leber congenital amaurosis caused by defects in AIPL1: effective rescue of mouse models of partial and complete Aipl1 deficiency using AAV2/2 and AAV2/8 vectors. Hum Mol Genet 2009; 18: 2099–2114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sun X, Pawlyk B, Xu X, Liu X, Bulgakov OV, Adamian M et al. Gene therapy with a promoter targeting both rods and cones rescues retinal degeneration caused by AIPL1 mutations. Gene Therapy 2010; 17: 117–131.

    Article  CAS  PubMed  Google Scholar 

  68. Dejneka NS, Auricchio A, Maguire AM, Ye X, Gao GP, Wilson JM et al. Pharmacologically regulated gene expression in the retina following transduction with viral vectors. Gene Therapy 2001; 8: 442–446.

    Article  CAS  PubMed  Google Scholar 

  69. Lheriteau E, Libeau L, Mendes-Madeira A, Deschamps JY, Weber M, Le Meur G et al. Regulation of retinal function but nonrescue of vision in RPE65-deficient dogs treated with doxycycline-regulatable AAV vectors. Mol Ther 2010; 18: 1085–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kohl S, Varsanyi B, Antunes GA, Baumann B, Hoyng CB, Jagle H et al. CNGB3 mutations account for 50% of all cases with autosomal recessive achromatopsia. Eur J Hum Genet 2005; 13: 302–308.

    Article  CAS  PubMed  Google Scholar 

  71. Kohl S, Baumann B, Broghammer M, Jagle H, Sieving P, Kellner U et al. Mutations in the CNGB3 gene encoding the beta-subunit of the cone photoreceptor cGMP-gated channel are responsible for achromatopsia (ACHM3) linked to chromosome 8q21. Hum Mol Genet 2000; 9: 2107–2116.

    Article  CAS  PubMed  Google Scholar 

  72. Peng C, Rich ED, Varnum MD . Subunit configuration of heteromeric cone cyclic nucleotide-gated channels. Neuron 2004; 42: 401–410.

    Article  CAS  PubMed  Google Scholar 

  73. Komaromy AM, Alexander JJ, Rowlan JS, Garcia MM, Chiodo VA, Kaya A et al. Gene therapy rescues cone function in congenital achromatopsia. Hum Mol Genet 2010; 19: 2581–2593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Carvalho LS, Xu J, Pearson RA, Smith AJ, Bainbridge JW, Morries LM et al. Long-term and age-dependent restoration of visual function in a mouse model of CNGB3-associated achromatopsia following Gene Therapyapy. Hum Mol Genet 2011; 20: 3161–3175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Michalakis S, Muhlfriedel R, Tanimoto N, Krishnamoorthy V, Koch S, Fischer MD et al. Restoration of cone vision in the CNGA3−/− mouse model of congenital complete lack of cone photoreceptor function. Mol Ther 2010; 18: 2057–2063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sikkink SK, Biswas S, Parry NR, Stanga PE, Trump D . X-linked retinoschisis: an update. J Med Genet 2007; 44: 225–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Min SH, Molday LL, Seeliger MW, Dinculescu A, Timmers AM, Janssen A et al. Prolonged recovery of retinal structure/function after Gene Therapyapy in an Rs1h-deficient mouse model of x-linked juvenile retinoschisis. Mol Ther 2005; 12: 644–651.

    Article  CAS  PubMed  Google Scholar 

  78. Zeng Y, Takada Y, Kjellstrom S, Hiriyanna K, Tanikawa A, Wawrousek E et al. RS-1 gene delivery to an adult Rs1h knockout mouse model restores ERG b-wave with reversal of the electronegative waveform of X-linked retinoschisis. Invest Ophthalmol Vis Sci 2004; 45: 3279–3285.

    Article  PubMed  Google Scholar 

  79. Park TK, Wu Z, Kjellstrom S, Zeng Y, Bush RA, Sieving PA et al. Intravitreal delivery of AAV8 retinoschisin results in cell type-specific gene expression and retinal rescue in the Rs1-KO mouse. Gene Therapy 2009; 16: 916–926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Qi X, Sun L, Lewin AS, Hauswirth WW, Guy J . The mutant human ND4 subunit of complex I induces optic neuropathy in the mouse. Invest Ophthalmol Vis Sci 2007; 48: 1–10.

    Article  PubMed  Google Scholar 

  81. Ellouze S, Augustin S, Bouaita A, Bonnet C, Simonutti M, Forster V et al. Optimized allotopic expression of the human mitochondrial ND4 prevents blindness in a rat model of mitochondrial dysfunction. Am J Hum Genet 2008; 83: 373–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu X, Vansant G, Udovichenko IP, Wolfrum U, Williams DS . Myosin VIIa, the product of the Usher 1B syndrome gene, is concentrated in the connecting cilia of photoreceptor cells. Cell Motil Cytoskeleton 1997; 37: 240–252.

    Article  CAS  PubMed  Google Scholar 

  83. Hasson T, Heintzelman MB, Santos-Sacchi J, Corey DP, Mooseker MS . Expression in cochlea and retina of myosin VIIa, the gene product defective in Usher syndrome type 1B. Proc Natl Acad Sci USA 1995; 92: 9815–9819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Reiners J, Reidel B, El-Amraoui A, Boeda B, Huber I, Petit C et al. Differential distribution of harmonin isoforms and their possible role in Usher-1 protein complexes in mammalian photoreceptor cells. Invest Ophthalmol Vis Sci 2003; 44: 5006–5015.

    Article  PubMed  Google Scholar 

  85. Hashimoto T, Gibbs D, Lillo C, Azarian SM, Legacki E, Zhang XM et al. Lentiviral gene replacement therapy of retinas in a mouse model for Usher syndrome type 1B. Gene Therapy 2007; 14: 584–594.

    Article  CAS  PubMed  Google Scholar 

  86. Hasson T, Walsh J, Cable J, Mooseker MS, Brown SD, Steel KP . Effects of shaker-1 mutations on myosin-VIIa protein and mRNA expression. Cell Motil Cytoskeleton 1997; 37: 127–138.

    Article  CAS  PubMed  Google Scholar 

  87. Bainbridge JWB, Stephens C, Parsley K, Demaison C, Halfyard A, Thrasher AJ et al. In vivo gene transfer to the mouse eye using an HIV-based lentiviral vector; efficient long-term transduction of corneal endothelium and retinal pigment epithelium. Gene Therapy 2001; 8: 1665–1668.

    Article  CAS  PubMed  Google Scholar 

  88. Gruter O, Kostic C, Crippa SV, Perez MT, Zografos L, Schorderet DF et al. Lentiviral vector-mediated gene transfer in adult mouse photoreceptors is impaired by the presence of a physical barrier. Gene Therapy 2005; 12: 942–947.

    Article  CAS  PubMed  Google Scholar 

  89. Yang J, Liu X, Zhao Y, Adamian M, Pawlyk B, Sun X et al. Ablation of whirlin long isoform disrupts the USH2 protein complex and causes vision and hearing loss. PLoS Genet 2010; 6: e1000955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zou J, Luo L, Shen Z, Chiodo VA, Ambati BK, Hauswirth WW et al. Whirlin replacement restores the formation of the USH2 protein complex in whirlin knockout photoreceptors. Invest Ophthalmol Vis Sci 2011; 52: 2343–2351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zaghloul NA, Katsanis N . Mechanistic insights into Bardet-Biedl syndrome a model ciliopathy. J Clin Invest 2009; 119: 428–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Simons DL, Boye SL, Hauswirth WW, Wu SM . Gene therapy prevents photoreceptor death and preserves retinal function in a Bardet-Biedl syndrome mouse model. Proc Natl Acad Sci USA 2011; 108: 6276–6278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Allikmets R . A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet 1997; 17: 122.

    CAS  PubMed  Google Scholar 

  94. Allocca M, Doria M, Petrillo M, Colella P, Garcia-Hoyos M, Gibbs D et al. Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice. J Clin Invest 2008; 118: 1955–1964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kong J, Kim SR, Binley K, Pata I, Doi K, Mannik J et al. Correction of the disease phenotype in the mouse model of Stargardt disease by lentiviral gene yherapy. Gene Therapy 2008; 15: 1311–1320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Stieger K, Le Meur G, Lasne F, Weber M, Deschamps JY, Nivard D et al. Long-term doxycycline-regulated transgene expression in the retina of nonhuman primates following subretinal injection of recombinant AAV vectors. Mol Ther 2006; 13: 967–975.

    Article  CAS  PubMed  Google Scholar 

  97. Baye LM, Patrinostro X, Swaminathan S, Beck JS, Zhang Y, Stone EM et al. The N-terminal region of centrosomal protein 290 (CEP290) restores vision in a zebrafish model of human blindness. Hum Mol Genet 2011; 20: 1467–1477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Alexander JJ, Umino Y, Everhart D, Chang B, Min SH, Li Q et al. Restoration of cone vision in a mouse model of achromatopsia. Nat Med 2007; 13: 685–687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Surace EM, Domenici L, Cortese K, Cotugno G, Di Vicino U, Venturi C et al. Amelioration of both functional and morphological abnormalities in the retina of a mouse model of ocular albinism following AAV-mediated gene transfer. Mol Ther 2005; 12: 652–658.

    Article  CAS  PubMed  Google Scholar 

  100. Batten ML, Imanishi Y, Tu DC, Doan T, Zhu L, Pang J et al. Pharmacological and rAAV Gene Therapyapy rescue of visual functions in a blind mouse model of Leber congenital amaurosis. PLoS Med 2005; 2: e333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Palfi A, Millington-Ward S, Chadderton N, O’Reilly M, Goldmann T, Humphries MM et al. Adeno-associated virus-mediated rhodopsin replacement provides therapeutic benefit in mice with a targeted disruption of the rhodopsin gene. Hum Gene Therapy 2010; 21: 311–323.

    Article  CAS  Google Scholar 

  102. Pang JJ, Chang B, Kumar A, Nusinowitz S, Noorwez SM, Li J et al. Gene therapy restores vision-dependent behavior as well as retinal structure and function in a mouse model of RPE65 Leber congenital amaurosis. Mol Ther 2006; 13: 565–572.

    Article  CAS  PubMed  Google Scholar 

  103. Gargiulo A, Bonetti C, Montefusco S, Neglia S, Di Vicino U, Marrocco E et al. AAV-mediated tyrosinase gene transfer restores melanogenesis and retinal function in a model of oculo-cutaneous albinism type I (OCA1). Mol Ther 2009; 17: 1347–1354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A J Smith.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, A., Bainbridge, J. & Ali, R. Gene supplementation therapy for recessive forms of inherited retinal dystrophies. Gene Ther 19, 154–161 (2012). https://doi.org/10.1038/gt.2011.161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.161

Keywords

This article is cited by

Search

Quick links